Development of seven hybrid methods based on collective intelligence for solving nonlinear constrained optimization problems

Many real-world problems can be seen as constrained nonlinear optimization problems (CNOP). These problems are relevant because they frequently appear in many industry and science fields, promoting, in the last decades, the design and development of many algorithms for solving CNOP. In this paper, seven hybrids techniques, based on particle swarm optimization, the method of musical composition and differential evolution, as well as a new fitness function formulation used to guide the search, are presented. In order to prove the performance of these techniques, twenty-four benchmark CNOP were used. The experimental results showed that the proposed hybrid techniques are competitive, since their behavior is similar to that observed for several methods reported in the specialized literature. More remarkably, new best known are identified for some test instances.

[1]  Enrique Alba,et al.  Parallel Hybrid Metaheuristics , 2005 .

[2]  Shiji Song,et al.  hybrid differential evolution algorithm for job shop scheduling problems with xpected total tardiness criterion , 2013 .

[3]  Tetsuyuki Takahama,et al.  Constrained Optimization by the ε Constrained Differential Evolution with Gradient-Based Mutation and Feasible Elites , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[4]  Mauro Brunato,et al.  Reactive Search and Intelligent Optimization , 2008 .

[5]  Christian Blum,et al.  A Brief Survey on Hybrid Metaheuristics , 2010 .

[6]  Varmo Vene,et al.  Recursion Schemes for Dynamic Programming , 2006, MPC.

[7]  H. H. Balci,et al.  Scheduling electric power generators using particle swarm optimization combined with the Lagrangian relaxation method , 2004 .

[8]  Pablo Moscato,et al.  A Gentle Introduction to Memetic Algorithms , 2003, Handbook of Metaheuristics.

[9]  Micael Gallego,et al.  GRASP and path relinking for the max-min diversity problem , 2010, Comput. Oper. Res..

[10]  Ellen H. Fukuda,et al.  A Gauss–Newton Approach for Solving Constrained Optimization Problems Using Differentiable Exact Penalties , 2013, J. Optim. Theory Appl..

[11]  Antonin Ponsich,et al.  An optimization algorithm inspired by musical composition in constrained optimization problems , 2013 .

[12]  Antonio LaTorre de la Fuente,et al.  A framework for hybrid dynamic evolutionary algorithms : multiple offspring sampling (MOS) , 2009 .

[13]  Victor J. Rayward-Smith,et al.  Modern Heuristic Search Methods , 1996 .

[14]  Carlos Cotta dash,et al.  A study of hybridisation techniques and their application to the design of evolutionary algorithms , 1998 .

[15]  Carlos Cotta A Study of Hybridisation Techniques and Their Application to the Design of Evolutionary Algorithms , 1998, AI Commun..

[16]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .

[17]  Zbigniew Michalewicz,et al.  Genetic AlgorithmsNumerical Optimizationand Constraints , 1995, ICGA.

[18]  Jing J. Liang,et al.  Problem Deflnitions and Evaluation Criteria for the CEC 2006 Special Session on Constrained Real-Parameter Optimization , 2006 .

[19]  Ruhul A. Sarker,et al.  On an evolutionary approach for constrained optimization problem solving , 2012, Appl. Soft Comput..

[20]  Christian Blum,et al.  Hybrid Metaheuristics: An Introduction , 2008, Hybrid Metaheuristics.

[21]  Günther R. Raidi A unified view on hybrid metaheuristics , 2006 .

[22]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[23]  Haiyan Lu,et al.  Self-adaptive velocity particle swarm optimization for solving constrained optimization problems , 2008, J. Glob. Optim..

[24]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms, Homomorphous Mappings, and Constrained Parameter Optimization , 1999, Evolutionary Computation.

[25]  Günther R. Raidl,et al.  Cooperating Memetic and Branch-and-Cut Algorithms for Solving the Multidimensional Knapsack Problem , 2005 .

[26]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[27]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[28]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[29]  Yanda Li,et al.  Constrained Optimization Using Triple Spaces Cultured Genetic Algorithm , 2008, 2008 Fourth International Conference on Natural Computation.

[30]  Jie Chen,et al.  Hybridizing Differential Evolution and Particle Swarm Optimization to Design Powerful Optimizers: A Review and Taxonomy , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[31]  Chun-An Liu New Multiobjective PSO Algorithm for Nonlinear Constrained Programming Problems , 2007 .

[32]  Thomas Stützle,et al.  Combinations of Local Search and Exact Algorithms , 2003, EvoWorkshops.

[33]  Carlos A. Coello Coello,et al.  A constraint-handling mechanism for particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[34]  Andrea Lodi,et al.  Lagrangian relaxation and Tabu Search approaches for the unit commitment problem , 2001, 2001 IEEE Porto Power Tech Proceedings (Cat. No.01EX502).

[35]  Koichi Nara,et al.  LAGRANGIAN RELAXATION METHOD FOR LONG-TERM UNIT COMMITMENT , 1990 .

[36]  El-Ghazali Talbi,et al.  A Taxonomy of Hybrid Metaheuristics , 2002, J. Heuristics.

[37]  Carlos A. Coello Coello,et al.  A modified version of a T‐Cell Algorithm for constrained optimization problems , 2010 .

[38]  Eric Alfredo Rincón García,et al.  An optimization algorithm inspired by musical composition , 2014, Artificial Intelligence Review.

[39]  S. De-Los-Cobos-Silva SC - SYSTEM OF CONVERGENCE: THEORY AND FOUNDATIONS , 2015 .

[40]  Ville Tirronen,et al.  Recent advances in differential evolution: a survey and experimental analysis , 2010, Artificial Intelligence Review.

[41]  Mora Gutiérrez,et al.  Diseño y desarrollo de un método heurístico basado en un sistema socio-cultural de creatividad para la resolución de problemas de optimización continuos no lineales y diseño de zonas electorales. , 2013 .

[42]  Yong Wang,et al.  Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization , 2010, Appl. Soft Comput..

[43]  Celso C. Ribeiro,et al.  Scatter Search and Path-Relinking: Fundamentals, Advances, and Applications , 2010 .

[44]  Christian Blum,et al.  Hybrid metaheuristics in combinatorial optimization: A survey , 2011, Appl. Soft Comput..

[45]  Z. Michalewicz Genetic Algorithms , Numerical Optimization , and Constraints , 1995 .

[46]  José Tomás Palma Méndez,et al.  Inteligencia artificial: técnicas, métodosy aplicaciones , 2008 .

[47]  Carlos Cotta,et al.  Solving the Multidimensional Knapsack Problem Using an Evolutionary Algorithm Hybridized with Branch and Bound , 2005, IWINAC.

[48]  Cheng Wu,et al.  A Hybrid Differential Evolution and Tree Search Algorithm for the Job Shop Scheduling Problem , 2011 .

[49]  P. V. Geert,et al.  A dynamic systems model of basic developmental mechanisms: Piaget, Vygotsky, and beyond , 1998 .

[50]  Günther R. Raidl,et al.  A Unified View on Hybrid Metaheuristics , 2006, Hybrid Metaheuristics.

[51]  Patrick Prosser,et al.  Solving Vehicle Routing Problems Using Constraint Programming and Metaheuristics , 2000, J. Heuristics.

[52]  David Pisinger,et al.  Using Decomposition Techniques and Constraint Programming for Solving the Two-Dimensional Bin-Packing Problem , 2007, INFORMS J. Comput..

[53]  Gary G. Yen,et al.  An Adaptive Penalty Formulation for Constrained Evolutionary Optimization , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[54]  Eric Alfredo Rincón García,et al.  Adaptation of the musical composition method for solving constrained optimization problems , 2014, Soft Comput..

[55]  Kenneth V. Price,et al.  An introduction to differential evolution , 1999 .

[56]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[57]  Pablo Moscato,et al.  A Modern Introduction to Memetic Algorithms , 2010 .

[58]  Efrén Mezura-Montes,et al.  Differential evolution in constrained numerical optimization: An empirical study , 2010, Inf. Sci..

[59]  Carlos A. Coello Coello,et al.  Optimization with constraints using a cultured differential evolution approach , 2005, GECCO '05.

[60]  Patrice Joyeux,et al.  Particle swarm optimization for solving engineering problems: A new constraint-handling mechanism , 2013, Eng. Appl. Artif. Intell..

[61]  Günther R. Raidl,et al.  Combining Metaheuristics and Exact Algorithms in Combinatorial Optimization: A Survey and Classification , 2005, IWINAC.

[62]  John Geraghty,et al.  Genetic Algorithm Performance with Different Selection Strategies in Solving TSP , 2011 .

[63]  Yong Wang,et al.  A Multiobjective Optimization-Based Evolutionary Algorithm for Constrained Optimization , 2006, IEEE Transactions on Evolutionary Computation.

[64]  Helio J. C. Barbosa,et al.  An adaptive penalty scheme for genetic algorithms in structural optimization , 2004 .

[65]  Jong-Bae Park,et al.  A hybrid genetic algorithm/dynamic programming approach to optimal long-term generation expansion planning , 1998 .

[66]  Russell C. Eberhart,et al.  Solving Constrained Nonlinear Optimization Problems with Particle Swarm Optimization , 2002 .

[67]  Pablo Moscato,et al.  Memetic algorithms: a short introduction , 1999 .

[68]  María S. Pérez-Hernández,et al.  GA-EDA: A New Hybrid Cooperative Search Evolutionary Algorithm , 2006, Towards a New Evolutionary Computation.

[69]  Eric Alfredo Rincón García,et al.  An optimization algorithm inspired by social creativity systems , 2012, Computing.

[70]  Margaret Kinzel,et al.  Explicating a Mechanism for Conceptual Learning: Elaborating the Construct of Reflective Abstraction , 2004 .

[71]  Graham Kendall,et al.  Hyper-Heuristics: An Emerging Direction in Modern Search Technology , 2003, Handbook of Metaheuristics.

[72]  Zbigniew Michalewicz,et al.  Test-case generator for nonlinear continuous parameter optimization techniques , 2000, IEEE Trans. Evol. Comput..

[73]  Antonin Ponsich,et al.  An Efficient Algorithm for Unconstrained Optimization , 2015 .