Observing and Predicting Chaotic Signals: Is 2% Noise Too Much?

We discuss the influence of noise on the analysis of complex time series data. How harmful it is depends on the nature of the noise, the complexity of the signal and on the application in mind. We will give generally valid upper bounds on the feasible noise level for dimension, entropy and Lyapunov estimates and lower bounds for the optimal achievable prediction error. We illustrate in a number of examples why it is hard to reach these bounds in practice. We briefly sketch methods to detect, analyze and reduce measurement noise.

[1]  Ulrich Parlitz,et al.  Identification of True and Spurious Lyapunov Exponents from Time Series , 1992 .

[2]  R. Gencay,et al.  An algorithm for the n Lyapunov exponents of an n -dimensional unknown dynamical system , 1992 .

[3]  P. Grassberger,et al.  Estimation of the Kolmogorov entropy from a chaotic signal , 1983 .

[4]  T. Sauer A noise reduction method for signals from nonlinear systems , 1992 .

[5]  Holger Kantz,et al.  Repellers, semi-attractors, and long-lived chaotic transients , 1985 .

[6]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[7]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[8]  Y. C. Lee,et al.  Evolution, Learning And Cognition , 1988 .

[9]  Broggi,et al.  Dimension increase in filtered chaotic signals. , 1988, Physical review letters.

[10]  J. D. Farmer,et al.  A Theory of State Space Reconstruction in the Presence of Noise , 1991 .

[11]  Leonard A. Smith Identification and prediction of low dimensional dynamics , 1992 .

[12]  Eric J. Kostelich,et al.  Problems in estimating dynamics from data , 1992 .

[13]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[14]  James B. Kadtke,et al.  GLOBAL NONLINEAR NOISE REDUCTION USING RADIAL BASIS FUNCTIONS , 1993 .

[15]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[16]  Kantz Quantifying the closeness of fractal measures. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  Schreiber,et al.  Nonlinear noise reduction: A case study on experimental data. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  Sawada,et al.  Measurement of the Lyapunov spectrum from a chaotic time series. , 1985, Physical review letters.

[19]  Hsu,et al.  Local-geometric-projection method for noise reduction in chaotic maps and flows. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[20]  U. Parlitz,et al.  Lyapunov exponents from time series , 1991 .

[21]  M. Rosenstein,et al.  A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .

[22]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[23]  David S. Broomhead,et al.  Multivariable Functional Interpolation and Adaptive Networks , 1988, Complex Syst..

[24]  Brun,et al.  Model identification by periodic-orbit analysis for NMR-laser chaos. , 1991, Physical review letters.

[25]  P. Grassberger,et al.  NONLINEAR TIME SEQUENCE ANALYSIS , 1991 .

[26]  H. Kantz A robust method to estimate the maximal Lyapunov exponent of a time series , 1994 .

[27]  P. Grassberger,et al.  On noise reduction methods for chaotic data. , 1993, Chaos.

[28]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[29]  Schreiber,et al.  Extremely simple nonlinear noise-reduction method. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  Farmer,et al.  Predicting chaotic time series. , 1987, Physical review letters.

[31]  Raymond Kapral,et al.  Effects of molecular fluctuations on chemical oscillations and chaos , 1994 .

[32]  Parisi,et al.  Topological and metric analysis of heteroclinic crisis in laser chaos. , 1992, Physical review letters.

[33]  P. Grassberger,et al.  A simple noise-reduction method for real data , 1991 .

[34]  P. Grassberger,et al.  Dimensions and entropies of strange attractors from a fluctuating dynamics approach , 1984 .

[35]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application , 1980 .

[36]  J. Doyne Farmer,et al.  Exploiting Chaos to Predict the Future and Reduce Noise , 1989 .

[37]  Eckmann,et al.  Liapunov exponents from time series. , 1986, Physical review. A, General physics.

[38]  Schreiber Determination of the noise level of chaotic time series. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[39]  Martin Casdagli,et al.  Nonlinear prediction of chaotic time series , 1989 .

[40]  K. Ikeda Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system , 1979 .

[41]  Brown,et al.  Computing the Lyapunov spectrum of a dynamical system from an observed time series. , 1991, Physical review. A, Atomic, molecular, and optical physics.