Mixed-component metal–organic frameworks (MC-MOFs): enhancing functionality through solid solution formation and surface modifications

Mixed-component metal–organic frameworks (MC-MOFs) are metal–organic frameworks that have different linkers or metals with the same structural role. Many of these mixed-ligand or mixed-metal MOFs are solid solutions, in which the proportions of the ligands or metals can be adjusted or even controlled. These MC-MOFs can be prepared directly, using more than one metal or ligand in the synthesis, or formed by post-synthetic modification. A second class of MC-MOFs have core–shell structures, and these can be prepared through epitaxial growth of one MOF on the surface of another or post-synthetic modification of the crystal surfaces. This review describes the syntheses, structures and properties of mixed-ligand, mixed-metal and core–shell MOFs, and highlights some of the potential benefits in functionality that these materials have.

[1]  B. Sumpter,et al.  Electronic structure and properties of isoreticular metal-organic frameworks: the case of M-IRMOF1 (M = Zn, Cd, Be, Mg, and Ca). , 2005, The Journal of chemical physics.

[2]  Seth M. Cohen,et al.  Postsynthetic modification: a versatile approach toward multifunctional metal-organic frameworks. , 2009, Inorganic chemistry.

[3]  J. Hupp,et al.  Alkali metal cation effects on hydrogen uptake and binding in metal-organic frameworks. , 2008, Inorganic chemistry.

[4]  M. Rosseinsky,et al.  Framework functionalisation triggers metal complex binding. , 2008, Chemical communications.

[5]  Wenbin Lin,et al.  Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing. , 2007, Journal of the American Chemical Society.

[6]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[7]  C. Frost,et al.  Dipyridyl beta-diketonate complexes: versatile polydentate metalloligands for metal-organic frameworks and hydrogen-bonded networks. , 2010, Chemical communications.

[8]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[9]  R. Robson Design and its limitations in the construction of bi- and poly-nuclear coordination complexes and coordination polymers (aka MOFs): a personal view. , 2008, Dalton transactions.

[10]  Jamie A. Gould,et al.  Nitric oxide chemisorption in a postsynthetically modified metal-organic framework. , 2009, Inorganic chemistry.

[11]  Seth M. Cohen,et al.  Covalent modification of a metal-organic framework with isocyanates: probing substrate scope and reactivity. , 2008, Chemical communications.

[12]  Yanhua Song,et al.  Facile and rapid fabrication of metal–organic framework nanobelts and color-tunable photoluminescence properties , 2010 .

[13]  S. Kitagawa,et al.  Coordinatively immobilized monolayers on porous coordination polymer crystals. , 2010, Angewandte Chemie.

[14]  Christian J. Doonan,et al.  Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks , 2010, Science.

[15]  Keiji Nakagawa,et al.  A block PCP crystal: anisotropic hybridization of porous coordination polymers by face-selective epitaxial growth. , 2009, Chemical communications.

[16]  Keiji Nakagawa,et al.  Heterogeneously hybridized porous coordination polymer crystals: fabrication of heterometallic core-shell single crystals with an in-plane rotational epitaxial relationship. , 2009, Angewandte Chemie.

[17]  A. Baiker,et al.  MOF-5 based mixed-linker metal–organic frameworks: Synthesis, thermal stability and catalytic application , 2010 .

[18]  C. Knobler,et al.  Acid-catalyzed synthesis of zinc imidazolates and related bimetallic metal-organic framework compounds , 2008 .

[19]  Seth M. Cohen Modifying MOFs: new chemistry, new materials , 2010 .

[20]  Michael O'Keeffe,et al.  High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture , 2008, Science.

[21]  C. Frost,et al.  Sulfur-tagged metal-organic frameworks and their post-synthetic oxidation. , 2009, Chemical communications.

[22]  Zhigang Xie,et al.  Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. , 2009, Journal of the American Chemical Society.

[23]  Omar M. Yaghi,et al.  Metal-organic frameworks: a new class of porous materials , 2004 .

[24]  Kimoon Kim,et al.  Rigid and flexible: a highly porous metal-organic framework with unusual guest-dependent dynamic behavior. , 2004, Angewandte Chemie.

[25]  Joseph T Hupp,et al.  Chemical reduction of metal-organic framework materials as a method to enhance gas uptake and binding. , 2007, Journal of the American Chemical Society.

[26]  Tao Wu,et al.  New Zeolitic Imidazolate Frameworks: From Unprecedented Assembly of Cubic Clusters to Ordered Cooperative Organization of Complementary Ligands , 2008 .

[27]  Hyunuk Kim,et al.  Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials. , 2005, Chemistry.

[28]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[29]  Demetra A. Chengelis,et al.  Near-infrared emitting ytterbium metal-organic frameworks with tunable excitation properties. , 2009, Chemical communications.

[30]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[31]  Hyunuk Kim,et al.  Metathesis in single crystal: complete and reversible exchange of metal ions constituting the frameworks of metal-organic frameworks. , 2009, Journal of the American Chemical Society.

[32]  Hae‐Kwon Jeong,et al.  Heteroepitaxial Growth of Isoreticular Metal−Organic Frameworks and Their Hybrid Films , 2010 .

[33]  Scott R. Wilson,et al.  Covalent surface modification of a metal-organic framework: selective surface engineering via Cu(I)-catalyzed Huisgen cycloaddition. , 2008, Chemical communications.

[34]  Jaheon Kim,et al.  A porous mixed-valent iron MOF exhibiting the acs net: Synthesis, characterization and sorption behavior of Fe3O(F4BDC)3(H2O)3·(DMF)3.5 , 2007 .

[35]  A. Matzger,et al.  Selective metal substitution for the preparation of heterobimetallic microporous coordination polymers. , 2008, Inorganic chemistry.

[36]  A. Matzger,et al.  Coordination copolymerization mediated by Zn4O(CO2R)6 metal clusters: a balancing act between statistics and geometry. , 2010, Journal of the American Chemical Society.

[37]  Michael O'Keeffe,et al.  Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. , 2009, Journal of the American Chemical Society.

[38]  S. Teat,et al.  Chemical Modification of a Bridging Ligand Inside a Metal–Organic Framework while Maintaining the 3D Structure , 2008 .

[39]  A. Corma,et al.  Gold(III) ― metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts , 2009 .

[40]  Ulrich Müller,et al.  Industrial applications of metal-organic frameworks. , 2009, Chemical Society reviews.

[41]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[42]  Chuan-De Wu,et al.  A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis. , 2005, Journal of the American Chemical Society.

[43]  S. Biju,et al.  Synthesis, Structure and Optical Studies of a Family of Three‐Dimensional Rare‐Earth Aminoisophthalates [M(μ2‐OH)(C8H5NO4)] (M = Y3+, La3+, Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Dy3+, and Er3+) , 2010 .

[44]  T. Trindade,et al.  Photoluminescent 3D Lanthanide−Organic Frameworks with 2,5-Pyridinedicarboxylic and 1,4-Phenylenediacetic Acids , 2008 .

[45]  A. Matzger,et al.  A crystalline mesoporous coordination copolymer with high microporosity. , 2008, Angewandte Chemie.

[46]  Seth M. Cohen,et al.  Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity. , 2009, Inorganic chemistry.

[47]  Christian J. Doonan,et al.  Crystals as molecules: postsynthesis covalent functionalization of zeolitic imidazolate frameworks. , 2008, Journal of the American Chemical Society.

[48]  Keiji Nakagawa,et al.  Solid solutions of soft porous coordination polymers: fine-tuning of gas adsorption properties. , 2010, Angewandte Chemie.

[49]  S. Kitagawa,et al.  Photoactivation of a nanoporous crystal for on-demand guest trapping and conversion. , 2010, Nature materials.

[50]  H. Furukawa,et al.  Ring-opening reactions within porous metal-organic frameworks. , 2010, Inorganic chemistry.

[51]  Qun Yu,et al.  Tuning the framework topologies of Co(II)-doped Zn(II)-tetrazole-benzoate coordination polymers by ligand modifications: structures and spectral studies. , 2009, Inorganic chemistry.

[52]  T. Juestel,et al.  One dimensional energy transfer in lanthanoid picolinates. Correlation of structure and spectroscopy , 2003 .

[53]  Z. Su,et al.  Mixed-valence iron(II, III) trimesates with open frameworks modulated by solvents. , 2007, Inorganic chemistry.

[54]  J. Tarascon,et al.  Mixed-valence li/fe-based metal-organic frameworks with both reversible redox and sorption properties. , 2007, Angewandte Chemie.

[55]  Zhenqiang Wang,et al.  Postsynthetic covalent modification of a neutral metal-organic framework. , 2007, Journal of the American Chemical Society.

[56]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[57]  S. Rigby,et al.  Selective incorporation of functional dicarboxylates into zinc metal-organic frameworks. , 2011, Chemical communications.

[58]  C. Serre,et al.  Synthesis, characterisation and luminescent properties of a new three-dimensional lanthanide trimesate: M((C6H3)–(CO2)3)(M = Y, Ln) or MIL-78 , 2004 .

[59]  C. Frost,et al.  Post-synthetic modification of tagged metal-organic frameworks. , 2008, Angewandte Chemie.

[60]  S. C. Jones,et al.  Diastereoselective heterogeneous bromination of stilbene in a porous metal-organic framework. , 2009, Journal of the American Chemical Society.

[61]  Weisheng Liu,et al.  Controlled Assembly of Dinuclear Metallorings into 1D Coordination Polymer and Mixed-metal Rare Earth Complexes with Red-to-Green Luminescence Properties , 2004 .

[62]  Nathaniel L Rosi,et al.  Near-infrared luminescent lanthanide MOF barcodes. , 2009, Journal of the American Chemical Society.

[63]  A. Matzger,et al.  MOF@MOF: microporous core-shell architectures. , 2009, Chemical communications.

[64]  Yanhua Song,et al.  Room-temperature synthesis and luminescence properties of Eu3+/Tb3+-doped La(1,3,5-BTC)(H2O)(6) , 2009 .

[65]  Julio Gómez-Herrero,et al.  Single layers of a multifunctional laminar Cu(I,II) coordination polymer. , 2010, Chemical communications.

[66]  Song Gao,et al.  Chiral magnetic metal-organic frameworks of dimetal subunits: magnetism tuning by mixed-metal compositions of the solid solutions. , 2006, Inorganic chemistry.

[67]  M. Garland,et al.  Synthesis and X-ray crystal determination of four novel lanthanide (III) oxydiacetate complexes , 1998 .

[68]  W. Marsden I and J , 2012 .

[69]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[70]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[71]  Seth M. Cohen,et al.  Postsynthetic diazeniumdiolate formation and NO release from MOFs , 2010 .

[72]  Thea M. Wilson,et al.  Framework reduction and alkali-metal doping of a triply catenating metal-organic framework enhances and then diminishes H2 uptake. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[73]  A. Torrisi,et al.  Reduction of a metal-organic framework by an organometallic complex: magnetic properties and structure of the inclusion compound [(eta5-C5H5)2Co](0.5)@MIL-47(V). , 2010, Angewandte Chemie.

[74]  S. Nguyen,et al.  Selective bifunctional modification of a non-catenated metal-organic framework material via "click" chemistry. , 2009, Journal of the American Chemical Society.

[75]  Gérard Férey,et al.  A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. , 2004, Chemistry.

[76]  J. Botas,et al.  Cobalt doping of the MOF-5 framework and its effect on gas-adsorption properties. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[77]  Kimoon Kim,et al.  Postsynthetic modification switches an achiral framework to catalytically active homochiral metal-organic porous materials. , 2009, Journal of the American Chemical Society.

[78]  S. Ng,,et al.  Spin-frustrated complex, [Fe(II)Fe(III)(trans-1,4-cyclohexanedicarboxylate)1.5]infinity: interplay between single-chain magnetic behavior and magnetic ordering. , 2009, Inorganic chemistry.

[79]  C. Cahill,et al.  Exploring lanthanide luminescence in metal-organic frameworks: synthesis, structure, and guest-sensitized luminescence of a mixed europium/terbium-adipate framework and a terbium-adipate framework. , 2007, Inorganic chemistry.

[80]  H. Raubenheimer,et al.  One‐Dimensional CdII Coordination Polymers: Solid Solutions with NiII, Thermal Stabilities and Structures , 2004 .

[81]  Michael O'Keeffe,et al.  Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[82]  Seth M. Cohen,et al.  Generating reactive MILs: isocyanate- and isothiocyanate-bearing MILs through postsynthetic modification. , 2010, Angewandte Chemie.

[83]  Seth M. Cohen,et al.  Tuning hydrogen sorption properties of metal-organic frameworks by postsynthetic covalent modification. , 2010, Chemistry.

[84]  Seth M. Cohen,et al.  Tandem modification of metal-organic frameworks by a postsynthetic approach. , 2008, Angewandte Chemie.

[85]  M. Doublet,et al.  Design of Electrode Materials for Lithium-Ion Batteries: The Example of Metal−Organic Frameworks , 2010 .

[86]  A. Baiker,et al.  Mixed-Linker Metal-Organic Frameworks as Catalysts for the Synthesis of Propylene Carbonate from Propylene Oxide and CO2 , 2009 .

[87]  A. Cheetham,et al.  Anionic Metal–Organic Frameworks of Bismuth Benzenedicarboxylates: Synthesis, Structure and Ligand‐Sensitized Photoluminescence , 2010 .

[88]  A. Baiker,et al.  Tuning functional sites and thermal stability of mixed-linker MOFs based on MIL-53(Al). , 2010, Dalton transactions.

[89]  Seth M. Cohen,et al.  Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification. , 2010, Journal of the American Chemical Society.

[90]  Seth M. Cohen,et al.  Engineering a metal-organic framework catalyst by using postsynthetic modification. , 2009, Angewandte Chemie.

[91]  Sang Soo Han,et al.  Recent advances on simulation and theory of hydrogen storage in metal-organic frameworks and covalent organic frameworks. , 2009, Chemical Society reviews.

[92]  Seth M. Cohen,et al.  Modular, active, and robust Lewis acid catalysts supported on a metal-organic framework. , 2010, Inorganic chemistry.

[93]  Seth M. Cohen,et al.  Systematic functionalization of a metal-organic framework via a postsynthetic modification approach. , 2008, Journal of the American Chemical Society.