Subspace identification for industrial processes

Subspace identification has been a topic of research along the last years. Methods as MOESP and N4SID are well known and they use the LQ decomposition of certain matrices of input and output data. Based on these methods, it is introduced the MON4SID method, which uses the techniques MOESP and N4SID.

[1]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[2]  Mats Viberg,et al.  Subspace-based methods for the identification of linear time-invariant systems , 1995, Autom..

[3]  Paulo Roberto Gardel Kurka,et al.  Application of a multivariable input–output subspace identification technique in structural analysis , 2008 .

[4]  Claudio Garcia,et al.  Modelagem de FCC usando Métodos de Identificação por Predição de Erro e por Sub-Espaços , 2004 .

[5]  Michel Verhaegen,et al.  Identification of the deterministic part of MIMO state space models given in innovations form from input-output data , 1994, Autom..

[6]  B. Moor,et al.  Subspace state space system identification for industrial processes , 1998 .

[7]  Martin Hromcik,et al.  Subspace identification methods and fMRI analysis , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[8]  Claudio Garcia,et al.  Subspace identification using the integration of MOESP and N 4 SID methods applied to the Shell benchmark of a distillation column , 2010 .

[9]  Patrick Dewilde,et al.  Subspace model identification Part 1. The output-error state-space model identification class of algorithms , 1992 .

[10]  Yucai Zhu Multivariable process identification for mpc: the asymptotic method and its applications , 1998 .

[11]  Barry J. Cott Introduction to the Process Identification Workshop at the 1992 Canadian Chemical Engineering Conference , 1995 .

[12]  Acpm Ton Backx,et al.  Identification of an industrial process : a Markov parameter approach , 1987 .

[13]  M. Viberg Subspace-based state-space system identification , 2002 .

[14]  Bart De Moor,et al.  A unifying theorem for three subspace system identification algorithms , 1995, Autom..

[15]  Wallace E. Larimore,et al.  Canonical variate analysis in identification, filtering, and adaptive control , 1990, 29th IEEE Conference on Decision and Control.

[16]  Mats Viberg,et al.  Subspace Methods in System Identification , 1994 .

[17]  W. E. Larimore,et al.  Automated multivariable system identification and industrial applications , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[18]  Tohru Katayama,et al.  Subspace Methods for System Identification , 2005 .

[19]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[20]  Bart De Moor,et al.  Algorithms for Subspace State-Space System Identification: An Overview , 1999 .

[21]  Sabine Van Huffel,et al.  Comparative study between three different subspace identification algorithms , 1999 .

[22]  Stéphane Lecoeuche,et al.  Propagator-based methods for recursive subspace model identification , 2008, Signal Process..

[23]  Bart De Moor,et al.  Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .