First-principles calculation of X-ray dichroic spectra within the full-potential linearized augmented planewave method: An implementation into the Wien2k code

Abstract X-ray absorption and its dependence on the polarization of light is a powerful tool to investigate the orbital and spin moments of magnetic materials and their orientation relative to crystalline axes. Here, we present a program for the calculation of dichroic spectra from first principles. We have implemented the calculation of X-ray absorption spectra for left and right circularly polarized light into the Wien2k code. In this package, spin-density functional theory is applied in an all-electron scheme that allows to describe both core and valence electrons on the same footing. The matrix elements, which define the dependence of the photo-absorption cross-section on the polarization of light and on the sample magnetization, are computed within the dipole approximation. Results are presented for the L 2 , 3 and M 4 , 5 egdes of CeFe2 and compared to experiments.

[1]  Claudia Ambrosch-Draxl,et al.  All-electron Bethe-Salpeter calculations for shallow-core x-ray absorption near-edge structures , 2009 .

[2]  Thole,et al.  X-ray circular dichroism and local magnetic fields. , 1993, Physical review letters.

[3]  Thole,et al.  X-ray circular dichroism as a probe of orbital magnetization. , 1992, Physical review letters.

[4]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[5]  C. Brouder Angular dependence of X-ray absorption spectra , 1990 .

[6]  D. Koelling,et al.  A linearised relativistic augmented-plane-wave method utilising approximate pure spin basis functions , 1980 .

[7]  D. Koelling,et al.  A technique for relativistic spin-polarised calculations , 1977 .

[8]  Johansson,et al.  4f-band magnetism in CeFe2. , 1988, Physical review letters.

[9]  H. Ebert,et al.  Magnetic circular dichroism in X-ray absorption: theoretical description and applications , 2004 .

[10]  P. Blaha,et al.  Understanding the L2,3 x-ray absorption spectra of early 3d transition elements , 2010 .

[11]  李幼升,et al.  Ph , 1989 .

[12]  J. Venables,et al.  Condensed matter , 1974, Nature.

[13]  O. K. Andersen,et al.  Linear methods in band theory , 1975 .

[14]  A. Panchula,et al.  MAGNETIC RESPONSE FUNCTION OF THE ITINERANT FERROMAGNET CEFE2 , 1998 .

[15]  Alexey I. Nesvizhskii,et al.  Dynamic screening effects in x-ray absorption spectra , 2003 .

[16]  Ingvar Lindgren,et al.  Atomic Many-Body Theory , 1982 .

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[19]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[20]  G. Lander,et al.  Magnetic ground state of pure and doped CeFe2. , 2003, Physical review letters.

[21]  A. Yaresko,et al.  X-ray magnetic circular dichroism inCeFe2: First-principles calculations , 2008 .

[22]  Marco Finazzi,et al.  X-ray magnetic circular dichroism study on CeFe2 , 1998 .

[23]  C. Draxl,et al.  XMCD Spectra Based on DensityFunctional Theory , 2011 .

[24]  J. Desclaux A multiconfiguration relativistic DIRAC-FOCK program , 1984 .

[25]  R. D. Cowan,et al.  The Theory of Atomic Structure and Spectra , 1981 .

[26]  Singh,et al.  Ground-state properties of lanthanum: Treatment of extended-core states. , 1991, Physical review. B, Condensed matter.

[27]  Bauer,et al.  Magnetic circular x-ray dichroism in Ce intermetallic compounds. , 1993, Physical review. B, Condensed matter.

[28]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[29]  J. Desclaux,et al.  Hartree Fock Slater self consistent field calculations , 1984 .

[30]  F. Manghi,et al.  Effects of electronic correlation on x-ray absorption and dichroic spectra at L2, 3 edge , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[31]  D. Koelling,et al.  Use of energy derivative of the radial solution in an augmented plane wave method: application to copper , 1975 .

[32]  David J. Singh,et al.  An alternative way of linearizing the augmented-plane-wave method , 2000 .

[33]  David J. Singh Planewaves, Pseudopotentials, and the LAPW Method , 1993 .

[34]  Claudia Ambrosch-Draxl,et al.  Augmented Planewave Methods , 2004 .

[35]  Jorge O. Sofo,et al.  Linear optical properties of solids within the full-potential linearized augmented planewave method , 2004, Comput. Phys. Commun..

[36]  Johansson,et al.  First-principles study of the magnetization density in CeFe2. , 1994, Physical review. B, Condensed matter.