Computational studies of atmospheric chemistry species. Part XI. A computational study of two ArN2 complexes

[1]  Z. Slanina A Computational Evaluation of Populations of Complexes under Atmospheric Conditions: The (H2O)2 and (CO2)2 Cases† , 1993 .

[2]  W. Jäger,et al.  The microwave spectrum of the van der Waals complex ArN2 , 1992 .

[3]  M. Takahashi Two‐color (2+1’) multiphoton ionization threshold photoelectron study of the Ar–NO van der Waals complex: Observation of intermolecular vibrational progressions of the Ar–NO+ cation , 1992 .

[4]  Z. Slanina,et al.  Application of the Stogryn-Hirschfelder treatment of weak dimers to planetary atmospheres , 1992 .

[5]  P. Fowler,et al.  Rotational spectra and structures of van der Waals dimers of Ar with a series of fluorocarbons: Ar⋅⋅⋅CH2CHF, Ar⋅⋅⋅CH2CF2, and Ar⋅⋅⋅CHFCF2 , 1991 .

[6]  R. C. Cohen,et al.  Far‐infrared vibration–rotation‐tunneling spectroscopy of Ar–NH3: Intermolecular vibrations and effective angular potential energy surface , 1991 .

[7]  J. Crifo,et al.  A computational evaluation of the gas-phase water dimerisation equilibrium constant in the low temperature region with particular attention to the interpretation of giotto and vega flyby observations of the coma of comet halley , 1991 .

[8]  S. Sander,et al.  Thermodynamics of acetylene van der Waals dimerization , 1991 .

[9]  J. Tennyson,et al.  Calculated spectra for the N2-Ar van der Waals complex , 1990 .

[10]  J. Crifo Water clusters in the coma of comet halley and their effect on the gas density, temperature, and velocity , 1990 .

[11]  P. Wormer,et al.  Computation of the short range repulsion energy from correlated monomer wavefunctions in van der Waals dimers containing He, Ne, and N2 , 1989 .

[12]  Lothar Frommhold,et al.  Collision-induced infrared spectra of H2-He pairs involving 0-1 vibrational transitions and temperatures from 18 to 7000 K , 1989 .

[13]  K. Fox,et al.  Spectra of van der Waals complexes (dimers) with applications to planetary atmospheres , 1988 .

[14]  M. Bowers,et al.  The anisotropic potentials of He–N2, Ne–N2, and Ar–N2 , 1988 .

[15]  Z. Slanina A theoretical evaluation of water oligomer populations in the Earth's atmosphere , 1988 .

[16]  A. Mckellar Infrared spectra of the (N2)2 and N2–Ar van der Waals molecules , 1988 .

[17]  A. Mckellar Experimental verification of hydrogen dimers in the atmospheres of Jupiter and Saturn from Voyager IRIS far-infrared spectra , 1988 .

[18]  Z. Slanina Decomposition of atmospheric water content into cluster contributions based on theoretical association equilibrium constants , 1987 .

[19]  T. V. Dam,et al.  New anisotropic potential energy surfaces for N2-Ne and N2-Ar , 1987 .

[20]  A. Borysow,et al.  Collision-induced rototranslational absorption spectra of N2-N2 pairs for temperatures from 50 to 300 K. [Of Titan atmosphere] , 1986 .

[21]  Z. Slanina Contemporary theory of chemical isomerism , 1986 .

[22]  Donald G. Truhlar,et al.  Systematic study of basis set superposition errors in the calculated interaction energy of two HF molecules , 1985 .

[23]  Fernando Pirani,et al.  The N2Ar potential energy surface , 1983 .

[24]  G. Rotzoll Anisotropic well depth parameters for for N2Ar, O2Ar, N2Kr, and O2Kr from total differential cross sections , 1982 .

[25]  J. Calo,et al.  Van Der Waals molecules ‐ Possible roles in the atmosphere , 1980 .

[26]  J. W. Chamberlain Theory of planetary atmospheres , 1978 .

[27]  A. E. Vries,et al.  Rotational relaxation times in nitrogen-noble-gas mixtures , 1975 .

[28]  J. Calo,et al.  The calculation of equilibrium mole fractions of polar‐polar, nonpolar‐polar, and ion dimers , 1974 .

[29]  G. Ewing,et al.  Infra-red spectrum, structure and properties of the N2-Ar van der Waals molecule , 1974 .

[30]  G. Ewing,et al.  The infrared spectrum of the (N2)2 van der waals molecule , 1973 .

[31]  C. F. Curtiss,et al.  Molecular Collisions. XVI. Comparison of GPS with Classical Trajectory Calculations of Rotational Inelasticity for the Ar–N2 System , 1971 .

[32]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .