An Invitation to Categorification
暂无分享,去创建一个
[1] You Qi,et al. On some p-differential graded link homologies , 2020, Forum of Mathematics, Pi.
[2] B. Webster,et al. Knot Invariants and Higher Representation Theory , 2013, 1309.3796.
[3] Matthew Hogancamp. A polynomial action on colored sl(2) link homology , 2014, 1405.2574.
[4] Evgeny Gorsky,et al. On Stable Khovanov Homology of Torus Knots , 2012, Exp. Math..
[5] Ben Elias,et al. The Hodge theory of Soergel bimodules , 2012, 1212.0791.
[6] R. Rouquier. Quiver Hecke Algebras and 2-Lie Algebras , 2011, 1112.3619.
[7] Vyacheslav Krushkal,et al. Categorification of the Jones-Wenzl Projectors , 2010, 1005.5117.
[8] Lev Rozansky,et al. An infinite torus braid yields a categorified Jones-Wenzl projector , 2010, 1005.3266.
[9] J. Brundan,et al. Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras , 2008, 0808.2032.
[10] Sabin Cautis,et al. Knot homology via derived categories of coherent sheaves I, sl(2) case , 2007, math/0701194.
[11] C. Stroppel,et al. A categorification of finite-dimensional irreducible representations of quantum sl(2) and their tensor products , 2005, math/0511467.
[12] M. Khovanov. Hopfological algebra and categorification at a root of unity: The first steps , 2005, math/0509083.
[13] C. Stroppel. Categorification of the Temperley-Lieb category, tangles, and cobordisms via projective functors , 2005 .
[14] D. Bar-Natan. Khovanov's homology for tangles and cobordisms , 2004, math/0410495.
[15] R. Rouquier,et al. Derived equivalences for symmetric groups and sl2-categorification , 2004, math/0407205.
[16] J. Rasmussen. Khovanov homology and the slice genus , 2004, math/0402131.
[17] L. Crane,et al. Four‐dimensional topological quantum field theory, Hopf categories, and the canonical bases , 1994, hep-th/9405183.