Low temperature characteristics in amorphous indium-gallium-zinc-oxide thin-film transistors down to 10 K

We report on the characteristics of amorphous indium-gallium-zinc-oxide thin-film transistors (TFTs) in the temperature range of 10–300 K. In the range of 80–300 K, the transfer characteristics are consistent with thermally activated band conduction. Below 80 K, the drain current vs. temperature behavior follows Mott's law, exp(−B/T−1/4), with constant B, indicating variable range hopping. The subthreshold swing of the TFT remains unchanged in the band conduction region, but it increases rapidly with decreasing temperature below 80 K. With decreasing temperature, the hopping activation energy decreases and hopping distance increases, and are 16.8 meV and ∼11.6 nm, respectively, at 60 K.

[1]  A. Dodabalapur,et al.  Band transport and mobility edge in amorphous solution-processed zinc tin oxide thin-film transistors , 2010 .

[2]  M. Nakata,et al.  Temperature-Dependent Transfer Characteristics of Amorphous InGaZnO4 Thin-Film Transistors , 2009 .

[3]  Arokia Nathan,et al.  Localized tail state distribution in amorphous oxide transistors deduced from low temperature measurements , 2012 .

[4]  T. Kamiya,et al.  Electronic Structures Above Mobility Edges in Crystalline and Amorphous In-Ga-Zn-O: Percolation Conduction Examined by Analytical Model , 2009, Journal of Display Technology.

[5]  U-In Chung,et al.  Trap-limited and percolation conduction mechanisms in amorphous oxide semiconductor thin film transistors , 2011 .

[6]  Zhiqing Li,et al.  Variable-range-hopping conduction processes in oxygen deficient polycrystalline ZnO films , 2010, 1702.06729.

[7]  Jin Jang,et al.  Temperature dependence of negative bias under illumination stress and recovery in amorphous indium gallium zinc oxide thin film transistors , 2013 .

[8]  Jin Jang,et al.  Time-temperature dependence of positive gate bias stress and recovery in amorphous indium-gallium-zinc-oxide thin-film-transistors , 2011 .

[9]  Hideo Hosono,et al.  Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films , 2004 .

[10]  Bruce E. Gnade,et al.  Mechanisms behind green photoluminescence in ZnO phosphor powders , 1996 .

[11]  E. Fortunato,et al.  Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances , 2012, Advanced materials.

[12]  Jin Jang,et al.  Light/negative bias stress instabilities in indium gallium zinc oxide thin film transistors explained by creation of a double donor , 2012 .

[13]  Masashi Kasami,et al.  High-Performance Thin Film Transistor with Amorphous In2O3–SnO2–ZnO Channel Layer , 2012 .

[14]  Zhiming Shi,et al.  Temperature behavior of electron-acceptor transitions and oxygen vacancy recombinations in ZnO thin films , 2010 .

[15]  H. Ohta,et al.  Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4 , 2005 .

[16]  Min Hyuk Choi,et al.  Transparent Flexible Circuits Based on Amorphous-Indium–Gallium–Zinc–Oxide Thin-Film Transistors , 2011, IEEE Electron Device Letters.

[17]  Hyun-Joong Chung,et al.  Bulk-Limited Current Conduction in Amorphous InGaZnO Thin Films , 2008 .

[18]  Jin Jang,et al.  Determination of flat band voltage in thin film transistors: The case of amorphous-indium gallium zinc oxide , 2012 .

[19]  Juhn-Jong Lin,et al.  Electrical conduction processes in ZnO in a wide temperature range 20-500 K , 2011, 1108.0980.