Numerical simulations of polycrystal growth in veins

[1]  P. Bons,et al.  The development of oblique preferred orientations in zeolite films and membranes , 2003 .

[2]  J. Urai,et al.  Microstructural observations on natural syntectonic fibrous veins: implications for the growth process , 2002 .

[3]  J. Urai,et al.  Experimental study of syntaxial vein growth during lateral fluid flow in transmitted light: first results , 2002 .

[4]  Jie Zhang,et al.  FACET: a novel model of simulation and visualization of polycrystalline thin film growth , 2002 .

[5]  C. Passchier,et al.  The origin of fibrous veins: constraints from geochemistry , 2002, Geological Society, London, Special Publications.

[6]  P. Bons Development of crystal morphology during unitaxial growth in a progressively widening vein: I. The numerical model , 2001 .

[7]  P. Bons,et al.  Development of crystal morphology during unitaxial growth in a progressively widening vein : II. Numerical simulations of the evolution of antitaxial fibrous veins , 2001 .

[8]  W. D. Means,et al.  A laboratory simulation of fibrous veins: some first observations , 2001 .

[9]  P. Bons,et al.  Mechanisms of fluid flow and fluid–rock interaction in fossil metamorphic hydrothermal systems inferred from vein–wallrock patterns, geometry and microstructure , 2001 .

[10]  John W. Morse,et al.  Crystallization pressure versus “crack seal” as the mechanism for banded veins , 2001 .

[11]  C. Passchier,et al.  Numerical simulation of fibre growth in antitaxial strain fringes , 2000 .

[12]  P. Bons The formation of veins and their microstructures , 2000 .

[13]  M. Jessell,et al.  Stress, Strain and Structure - A volume in honour of W.D. Means , 2000 .

[14]  R. Worden Fluid Flow and Transport in Rocks: Mechanisms and Effects , 1998 .

[15]  M. Jessell,et al.  Experimental simulation of the formation fibrous veins by localised dissolution-precipitation creep , 1997, Mineralogical Magazine.

[16]  B. Jamtveit,et al.  Fluid Flow and Transport in Rocks: An Overview , 1997 .

[17]  B. Jamtveit,et al.  FLUID FLOW AND TRANSPORT IN ROCKS , 1996 .

[18]  M. Jessell,et al.  Bedding parallel veins and their relationship to folding , 1994 .

[19]  R. Knipe,et al.  Microstructural and microchemical consequences of fluid flow in deforming rocks , 1994, Geological Society, London, Special Publications.

[20]  Susan L. Brantley,et al.  Models of quartz overgrowth and vein formation: Deformation and episodic fluid flow in an ancient subduction zone , 1992 .

[21]  Thijssen,et al.  Dynamic scaling in polycrystalline growth. , 1992, Physical review. B, Condensed matter.

[22]  J. Urai,et al.  Kinematics of crystal growth in syntectonic fibrous veins. , 1991 .

[23]  A. McCaig Deep fluid circulation in fault zones , 1988 .

[24]  J. Urai,et al.  Curved vein fibres: an alternative explanation , 1987 .

[25]  S. Cox,et al.  The role of fluids in syntectonic mass transport, and the localization of metamorphic vein-type ore deposists , 1987 .

[26]  S. Cox Antitaxial crack-seal vein microstructures and their relationship to displacement paths , 1987 .

[27]  R. Sibson Controls on low-stress hydro-fracture dilatancy in thrust, wrench and normal fault terrains , 1981, Nature.

[28]  John G. Ramsay,et al.  The crack–seal mechanism of rock deformation , 1980, Nature.

[29]  R. Scholten,et al.  Gravity and tectonics , 1973 .

[30]  D. P. Grigorʹev,et al.  Ontogeny of minerals , 1965 .

[31]  Carl W. Correns,et al.  Growth and dissolution of crystals under linear pressure , 1949 .

[32]  C. Porter Structural control of ore deposition , 1929 .

[33]  O. Mügge XXII. Über gehemmtes Kristallwachstum , 1925 .

[34]  S. Taber The Origin of Veins of the Asbestiform Minerals. , 1916, Proceedings of the National Academy of Sciences of the United States of America.