Universality of covariance matrices

In this paper we prove the universality of covariance matrices of the form $H_{N\times N}={X}^{\dagger}X$ where $X$ is an ${M\times N}$ rectangular matrix with independent real valued entries $x_{ij}$ satisfying $\mathbb{E}x_{ij}=0$ and $\mathbb{E}x^2_{ij}={\frac{1}{M}}$, $N$, $M\to \infty$. Furthermore it is assumed that these entries have sub-exponential tails or sufficiently high number of moments. We will study the asymptotics in the regime $N/M=d_N\in(0,\infty),\lim_{N\to\infty}d_N\neq0,\infty$. Our main result is the edge universality of the sample covariance matrix at both edges of the spectrum. In the case $\lim_{N\to\infty}d_N=1$, we only focus on the largest eigenvalue. Our proof is based on a novel version of the Green function comparison theorem for data matrices with dependent entries. En route to proving edge universality, we establish that the Stieltjes transform of the empirical eigenvalue distribution of $H$ is given by the Marcenko-Pastur law uniformly up to the edges of the spectrum with an error of order $(N\eta)^{-1}$ where $\eta$ is the imaginary part of the spectral parameter in the Stieltjes transform. Combining these results with existing techniques we also show bulk universality of covariance matrices. All our results hold for both real and complex valued entries.

[1]  F. Dyson A Brownian‐Motion Model for the Eigenvalues of a Random Matrix , 1962 .

[2]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[3]  Z. Bai,et al.  On the limit of the largest eigenvalue of the large dimensional sample covariance matrix , 1988 .

[4]  J. W. Silverstein,et al.  A note on the largest eigenvalue of a large dimensional sample covariance matrix , 1988 .

[5]  Alan Edelman,et al.  The distribution and moments of the smallest eigenvalue of a random matrix of wishart type , 1991 .

[6]  Z. Bai,et al.  Limit of the smallest eigenvalue of a large dimensional sample covariance matrix , 1993 .

[7]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[8]  A. Soshnikov A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices , 2001, math/0104113.

[9]  F. Götze,et al.  Rate of convergence in probability to the Marchenko-Pastur law , 2004 .

[10]  S. Péché,et al.  Universality of local eigenvalue statistics for some sample covariance matrices , 2005 .

[11]  D. Reich,et al.  Population Structure and Eigenanalysis , 2006, PLoS genetics.

[12]  I. Johnstone High Dimensional Statistical Inference and Random Matrices , 2006, math/0611589.

[13]  Craig A. Tracy,et al.  Application of Random Matrix Theory to Multivariate Statistics , 2006 .

[14]  S. Péché Universality results for largest eigenvalues of some sample covariance matrix ensembles , 2007, 0705.1701.

[15]  I. Johnstone MULTIVARIATE ANALYSIS AND JACOBI ENSEMBLES: LARGEST EIGENVALUE, TRACY-WIDOM LIMITS AND RATES OF CONVERGENCE. , 2008, Annals of statistics.

[16]  Ohad N. Feldheim,et al.  A Universality Result for the Smallest Eigenvalues of Certain Sample Covariance Matrices , 2008, 0812.1961.

[17]  Matthew Harding,et al.  Explaining the single factor bias of arbitrage pricing models in finite samples , 2008 .

[18]  T. Tao,et al.  Random matrices: Universality of local eigenvalue statistics , 2009, 0906.0510.

[19]  T. Tao,et al.  Random Matrices: the Distribution of the Smallest Singular Values , 2009, 0903.0614.

[20]  Jun Yin,et al.  The local relaxation flow approach to universality of the local statistics for random matrices , 2009, 0911.3687.

[21]  H. Yau,et al.  Universality of random matrices and local relaxation flow , 2009, 0907.5605.

[22]  A. Onatski TESTING HYPOTHESES ABOUT THE NUMBER OF FACTORS IN LARGE FACTOR MODELS , 2009 .

[23]  S. Péché,et al.  Bulk universality for Wigner matrices , 2009, 0905.4176.

[24]  S. Péché Universality in the bulk of the spectrum for complex sample covariance matrices , 2009, 0912.2493.

[25]  H. Yau,et al.  Bulk universality for generalized Wigner matrices , 2010, 1001.3453.

[26]  Jun Yin,et al.  Universality for generalized Wigner matrices with Bernoulli distribution , 2010, 1003.3813.

[27]  H. Yau,et al.  Rigidity of eigenvalues of generalized Wigner matrices , 2010, 1007.4652.

[28]  T. Tao,et al.  Random Matrices: Universality of Local Eigenvalue Statistics up to the Edge , 2009, 0908.1982.

[29]  Jun Yin,et al.  The Isotropic Semicircle Law and Deformation of Wigner Matrices , 2011, 1110.6449.

[30]  Jun Yin,et al.  Eigenvector distribution of Wigner matrices , 2011, 1102.0057.

[31]  Ke Wang RANDOM COVARIANCE MATRICES: UNIVERSALITY OF LOCAL STATISTICS OF EIGENVALUES UP TO THE EDGE , 2011, 1104.4832.

[32]  Wang Zhou,et al.  Tracy-Widom law for the extreme eigenvalues of sample correlation matrices , 2011, 1110.5208.

[33]  H. Yau,et al.  Spectral Statistics of Erdős-Rényi Graphs II: Eigenvalue Spacing and the Extreme Eigenvalues , 2011, 1103.3869.

[34]  H. Yau,et al.  Local circular law for random matrices , 2012, 1206.1449.

[35]  T. Tao,et al.  Random covariance matrices: Universality of local statistics of eigenvalues , 2009, 0912.0966.

[36]  Horng-Tzer Yau,et al.  A comment on the Wigner-Dyson-Mehta bulk universality conjecture for Wigner matrices , 2012, 1201.5619.

[37]  Jun Yin,et al.  Edge universality of correlation matrices , 2011, 1112.2381.

[38]  H. Yau,et al.  Spectral statistics of Erdős–Rényi graphs I: Local semicircle law , 2011, 1103.1919.

[39]  Claudio Cacciapuoti,et al.  Local Marchenko-Pastur law at the hard edge of sample covariance matrices , 2012, 1206.1730.