Opportunity Knocks: Organic Chemistry for Fragment-Based Drug Discovery (FBDD).

[1]  Edward R Zartler,et al.  Fragonomics: the -omics with real impact. , 2014, ACS medicinal chemistry letters.

[2]  Paul G Wyatt,et al.  Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H-pyrazole-3-carboxamide (AT7519), a novel cyclin dependent kinase inhibitor using fragment-based X-ray crystallography and structure based drug design. , 2008, Journal of medicinal chemistry.

[3]  M. Congreve,et al.  A 'rule of three' for fragment-based lead discovery? , 2003, Drug discovery today.

[4]  P. Hirth,et al.  Vemurafenib: the first drug approved for BRAF-mutant cancer , 2012, Nature Reviews Drug Discovery.

[5]  Simon J F Macdonald,et al.  Factors determining the selection of organic reactions by medicinal chemists and the use of these reactions in arrays (small focused libraries). , 2010, Angewandte Chemie.

[6]  Didier Rognan,et al.  Fragment-based approaches and computer-aided drug discovery. , 2012, Topics in current chemistry.

[7]  T. Ritter,et al.  Late-stage fluorination: fancy novelty or useful tool? , 2015, Angewandte Chemie.

[8]  Andrew R. Leach,et al.  Molecular Complexity and Its Impact on the Probability of Finding Leads for Drug Discovery , 2001, J. Chem. Inf. Comput. Sci..

[9]  Stefan Wetzel,et al.  Natural-product-derived fragments for fragment-based ligand discovery , 2012, Nature Chemistry.

[10]  Nicolas Guimond,et al.  Rhodium(III)-catalyzed heterocycle synthesis using an internal oxidant: improved reactivity and mechanistic studies. , 2011, Journal of the American Chemical Society.

[11]  A. Stamford,et al.  Inhibitors of BACE for treating Alzheimer's disease: a fragment-based drug discovery story. , 2013, Current opinion in chemical biology.

[12]  A. Nadin,et al.  Leitstruktur‐orientierte Synthese: eine Alternative für die Synthesechemie , 2012 .

[13]  Harren Jhoti,et al.  The 'rule of three' for fragment-based drug discovery: where are we now? , 2013, Nature Reviews Drug Discovery.

[14]  Christopher W Murray,et al.  Efficient exploration of chemical space by fragment-based screening. , 2014, Progress in biophysics and molecular biology.

[15]  Marcel L Verdonk,et al.  Identification of inhibitors of protein kinase B using fragment-based lead discovery. , 2007, Journal of medicinal chemistry.

[16]  Allan M Jordan,et al.  The medicinal chemist's toolbox: an analysis of reactions used in the pursuit of drug candidates. , 2011, Journal of medicinal chemistry.

[17]  Ajay,et al.  The SHAPES strategy: an NMR-based approach for lead generation in drug discovery. , 1999, Chemistry & biology.

[18]  Niklas Blomberg,et al.  Design of compound libraries for fragment screening , 2009, J. Comput. Aided Mol. Des..

[19]  Frank Glorius,et al.  Rh(III)-catalyzed directed C-H olefination using an oxidizing directing group: mild, efficient, and versatile. , 2011, Journal of the American Chemical Society.

[20]  Nathan Brown,et al.  Fragment-based hit identification: thinking in 3D. , 2013, Drug discovery today.

[21]  T. Hwang,et al.  Rh(III)-catalyzed C-H activation and double directing group strategy for the regioselective synthesis of naphthyridinones. , 2013, Journal of the American Chemical Society.

[22]  Thomas R. Ward,et al.  Biotinylated Rh(III) Complexes in Engineered Streptavidin for Accelerated Asymmetric C–H Activation , 2012, Science.

[23]  A. Hopkins,et al.  The role of ligand efficiency metrics in drug discovery , 2014, Nature Reviews Drug Discovery.

[24]  A. M. Giannetti,et al.  De novo fragment design: a medicinal chemistry approach to fragment-based lead generation. , 2013, Journal of medicinal chemistry.

[25]  M. Gaunt,et al.  A concise and scalable strategy for the total synthesis of dictyodendrin B based on sequential C-H functionalization. , 2015, Angewandte Chemie.

[26]  Daniel A Erlanson,et al.  Introduction to fragment-based drug discovery. , 2012, Topics in current chemistry.

[27]  G. Klebe Applying thermodynamic profiling in lead finding and optimization , 2015, Nature Reviews Drug Discovery.

[28]  C. Murray,et al.  The rise of fragment-based drug discovery. , 2009, Nature chemistry.

[29]  Irini Akritopoulou-Zanze,et al.  Kinase-targeted libraries: the design and synthesis of novel, potent, and selective kinase inhibitors. , 2009, Drug discovery today.

[30]  Edgar Jacoby,et al.  Library design for fragment based screening. , 2005, Current topics in medicinal chemistry.

[31]  Daniel A Erlanson,et al.  Learning from our mistakes: the 'unknown knowns' in fragment screening. , 2013, Bioorganic & medicinal chemistry letters.

[32]  Gianni Chessari,et al.  Application of fragment-based lead generation to the discovery of novel, cyclic amidine beta-secretase inhibitors with nanomolar potency, cellular activity, and high ligand efficiency. , 2007, Journal of medicinal chemistry.

[33]  S. F. Macdonald,et al.  Faktoren für die Auswahl organischer Reaktionen in der medizinischen Chemie und die Anwendung dieser Reaktionen in Arrays (kleinen fokussierten Bibliotheken) , 2010 .

[34]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[35]  Warren R. J. D. Galloway,et al.  Drug discovery: A question of library design , 2011, Nature.

[36]  Andrew J. Woodhead,et al.  Discovery of an allosteric mechanism for the regulation of HCV NS3 protein function , 2012, Nature chemical biology.

[37]  T. Magee Progress in discovery of small-molecule modulators of protein-protein interactions via fragment screening. , 2015, Bioorganic & medicinal chemistry letters.

[38]  N. Cramer,et al.  Chiral Cyclopentadienyl Ligands as Stereocontrolling Element in Asymmetric C–H Functionalization , 2012, Science.

[39]  P. Clemons,et al.  Route to three-dimensional fragments using diversity-oriented synthesis , 2011, Proceedings of the National Academy of Sciences.

[40]  G. Chessari,et al.  Fragment-Based Drug Discovery Targeting Inhibitor of Apoptosis Proteins: Discovery of a Non-Alanine Lead Series with Dual Activity Against cIAP1 and XIAP. , 2015, Journal of medicinal chemistry.

[41]  Brian Dymock,et al.  Design and Characterization of Libraries of Molecular Fragments for Use in NMR Screening against Protein Targets , 2004, J. Chem. Inf. Model..

[42]  Roderick E Hubbard,et al.  Experiences in fragment-based lead discovery. , 2011, Methods in enzymology.

[43]  Tobias Ritter,et al.  Fluorierung in späten Synthesestadien: extravagante Neuheit oder nützliches Hilfsmittel? , 2015 .

[44]  Monya Baker,et al.  Fragment-based lead discovery grows up , 2012, Nature Reviews Drug Discovery.

[45]  T. Rovis,et al.  Ligand design for Rh(iii)-catalyzed C–H activation: an unsymmetrical cyclopentadienyl group enables a regioselective synthesis of dihydroisoquinolones , 2014, Chemical Science.

[46]  James E. J. Mills,et al.  Design of a multi-purpose fragment screening library using molecular complexity and orthogonal diversity metrics , 2011, J. Comput. Aided Mol. Des..

[47]  Channa K. Hattotuwagama,et al.  Lead-oriented synthesis: a new opportunity for synthetic chemistry. , 2012, Angewandte Chemie.

[48]  Gianni Chessari,et al.  Fragment-based drug discovery applied to Hsp90. Discovery of two lead series with high ligand efficiency. , 2010, Journal of medicinal chemistry.