A versatile waveguide source of photon pairs for chip-scale quantum information processing.

We demonstrate a bright, bandwidth-tunable, quasi-phase-matched single-waveguide source generating photon pairs near 900 nm and 1300 nm. Two-photon coincidence spectra are measured at a range of operating temperatures of a periodically-poled KTiOPO(4) (PPKTP) waveguide, which supports both type-0 and type-II spontaneous parametric down-conversion. We map out relative contributions of two-photon to one-photon fluorescence for a range of operating parameters. Such a versatile device is highly promising for future chip-scale quantum information processing.

[1]  Sae Woo Nam,et al.  High-efficiency, ultra low-noise all-fiber photon-pair source. , 2008, Optics express.

[2]  A. Karlsson,et al.  Single crystal source of polarization entangled photons at non-degenerate wavelengths , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[3]  Aaron J. Miller,et al.  Counting near-infrared single-photons with 95% efficiency. , 2008, Optics express.

[4]  S. Cova,et al.  Progress in Silicon Single-Photon Avalanche Diodes , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  Thomas Jennewein,et al.  A wavelength-tunable fiber-coupled source of narrowband entangled photons. , 2007, Optics express.

[6]  Marco Fiorentino,et al.  Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals. , 2007, Optics express.

[7]  M. Fejer,et al.  Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock. , 2007, Optics express.

[8]  M. Swillo,et al.  Narrowband polarization-entangled photon pairs distributed over a WDM link for qubit networks , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[9]  A. Migdall,et al.  A broadband high spectral brightness fiber-based two-photon source. , 2007, Optics express.

[10]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[11]  C. Kurtsiefer,et al.  Joint spectrum mapping of polarization entanglement in spontaneous parametric down-conversion , 2006, quant-ph/0608009.

[12]  Jun Chen Development and applications of fiber-based entanglement sources , 2007 .

[13]  Jun Chen,et al.  Fiber-based telecom-band degenerate-frequency source of entangled photon pairs. , 2006, Optics letters.

[14]  Jun Chen,et al.  Generation of high purity telecom-band entangled photon-pairs in dispersion-shifted fiber , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[15]  P. Kumar,et al.  Distribution of Fiber-Generated Polarization Entangled Photon-Pairs over 100 km of Standard Fiber in OC-192 WDM Environment , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[16]  Vikas Anant,et al.  Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating. , 2006, Optics express.

[17]  K. Banaszek,et al.  Joint spectrum of photon pairs measured by coincidence Fourier spectroscopy. , 2005, Optics letters.

[18]  Christine Silberhorn,et al.  Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion , 2006, quant-ph/0611019.

[19]  C. Kurtsiefer,et al.  Preparation of bell states with controlled white noise , 2006, International Quantum Electronics Conference, 2005..

[20]  L J Wang,et al.  Generation of correlated photon pairs in a microstructure fiber. , 2005, Optics letters.

[21]  Kyo Inoue,et al.  1.5-microm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber. , 2005, Optics express.

[22]  J. Chen Two-photon-state generation via four-wave mixing in optical fibers (9 pages) , 2005 .

[23]  L J Wang,et al.  Efficient generation of correlated photon pairs in a microstructure fiber. , 2005, Optics letters.

[24]  P. Kumar,et al.  Measurement of co- and cross-polarized Raman spectra in silica fiber for small detunings , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[25]  Xiaoying Li,et al.  Measurement of co- and cross-polarized Raman spectra in silica fiber for small detunings: erratum. , 2005, Optics express.

[26]  Yoon-Ho Kim,et al.  Measurement of the spectral properties of the two-photon state generated via type-II spontaneous parametric down-conversion , 2005, 2005 Quantum Electronics and Laser Science Conference.

[27]  Paul L Voss,et al.  Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. , 2004, Physical review letters.

[28]  Christine Silberhorn,et al.  Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks. , 2004, Physical review letters.

[29]  H. Takesue,et al.  Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop , 2004, quant-ph/0408032.

[30]  I. Walmsley,et al.  Photon engineering for quantum information processing , 2003, Quantum Inf. Comput..

[31]  D. Branning,et al.  Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source , 2002, quant-ph/0205140.

[32]  I. Walmsley,et al.  Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides. , 2001, Optics letters.

[33]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[34]  K. Sanaka,et al.  New high-efficiency source of photon pairs for engineering quantum entanglement. , 2000, Physical review letters.

[35]  N. Gisin,et al.  Highly efficient photon-pair source using periodically poled lithium niobate waveguide , 2000, quant-ph/0012053.

[36]  Law,et al.  Continuous frequency entanglement: effective finite hilbert space and entropy control , 2000, Physical review letters.

[37]  Benoît Boulanger,et al.  Optical studies of laser-induced gray-tracking in KTP , 1999 .

[38]  I. Walmsley,et al.  Spectral information and distinguishability in type-II down-conversion with a broadband pump , 1997 .

[39]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[40]  P. Knight,et al.  Entangled quantum systems and the Schmidt decomposition , 1995 .

[41]  Shih,et al.  Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by type-II parametric down-conversion. , 1993, Physical review letters.

[42]  M. Fejer,et al.  Quasi-phase-matched second harmonic generation: tuning and tolerances , 1992 .

[43]  Herman Vanherzeele,et al.  Potassium titanyl phosphate: properties and new applications , 1989 .

[44]  R L Byer,et al.  Second harmonic generation and accurate index of refraction measurements in flux-grown KTiOPO(4). , 1987, Applied optics.

[45]  D. Klyshko,et al.  Use of two-photon light for absolute calibration of photoelectric detectors , 1980 .

[46]  David C. Burnham,et al.  Observation of Simultaneity in Parametric Production of Optical Photon Pairs , 1970 .