First order optimality conditions for mathematical programs with semidefinite cone complementarity constraints

In this paper we consider a mathematical program with semidefinite cone complementarity constraints (SDCMPCC). Such a problem is a matrix analogue of the mathematical program with (vector) complementarity constraints (MPCC) and includes MPCC as a special case. We first derive explicit formulas for the proximal and limiting normal cone of the graph of the normal cone to the positive semidefinite cone. Using these formulas and classical nonsmooth first order necessary optimality conditions we derive explicit expressions for the strong-, Mordukhovich- and Clarke- (S-, M- and C-)stationary conditions. Moreover we give constraint qualifications under which a local solution of SDCMPCC is a S-, M- and C-stationary point. Moreover we show that applying these results to MPCC produces new and weaker necessary optimality conditions.

[1]  Lixin Wu Fast at-the-money calibration of the LIBOR market model through Lagrange multipliers , 2002 .

[2]  Michal Kočvara,et al.  Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .

[3]  R. Fletcher Semi-Definite Matrix Constraints in Optimization , 1985 .

[4]  Allen J. Wood,et al.  Power Generation, Operation, and Control , 1984 .

[5]  Adrian S. Lewis,et al.  Nonsmooth analysis of eigenvalues , 1999, Math. Program..

[6]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[7]  Houduo Qi,et al.  A Sequential Semismooth Newton Method for the Nearest Low-rank Correlation Matrix Problem , 2011, SIAM J. Optim..

[8]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[9]  S. M. Robinson Stability Theory for Systems of Inequalities. Part I: Linear Systems , 1975 .

[10]  W. Marsden I and J , 2012 .

[11]  B. Mordukhovich Generalized Differential Calculus for Nonsmooth and Set-Valued Mappings , 1994 .

[12]  R N Mantegna,et al.  Spectral density of the correlation matrix of factor models: a random matrix theory approach. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[14]  V. Visweswaran,et al.  A global optimization algorithm (GOP) for certain classes of nonconvex NLPs—II. Application of theory and test problems , 1990 .

[15]  Defeng Sun,et al.  The Strong Second-Order Sufficient Condition and Constraint Nondegeneracy in Nonlinear Semidefinite Programming and Their Implications , 2006, Math. Oper. Res..

[16]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[17]  Jane J. Ye,et al.  Exact Penalization and Necessary Optimality Conditions for Generalized Bilevel Programming Problems , 1997, SIAM J. Optim..

[18]  Dick Duffey,et al.  Power Generation , 1932, Transactions of the American Institute of Electrical Engineers.

[19]  Xiaofan Yang,et al.  On the system of rational difference equations xn=A+yn−1/xn−pyn−q,yn=A+xn−1/xn−ryn−s , 2005 .

[20]  Philip G. Hill,et al.  Power generation , 1927, Journal of the A.I.E.E..

[21]  C. Kanzow,et al.  On the Guignard constraint qualification for mathematical programs with equilibrium constraints , 2005 .

[22]  B. Mordukhovich Variational Analysis and Generalized Differentiation II: Applications , 2006 .

[23]  M. Safonov,et al.  Exact calculation of the multiloop stability margin , 1988 .

[24]  Masao Fukushima,et al.  Smoothing method for mathematical programs with symmetric cone complementarity constraints , 2011 .

[25]  E. Verriest,et al.  On analyticity of functions involving eigenvalues , 1994 .

[26]  René Henrion,et al.  On the Calmness of a Class of Multifunctions , 2002, SIAM J. Optim..

[27]  Defeng Sun,et al.  Strong Semismoothness of Eigenvalues of Symmetric Matrices and Its Application to Inverse Eigenvalue Problems , 2002, SIAM J. Numer. Anal..

[28]  R. Rockafellar Convex Analysis: (pms-28) , 1970 .

[29]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[30]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[31]  Michael L. Overton,et al.  On the Sum of the Largest Eigenvalues of a Symmetric Matrix , 1992, SIAM J. Matrix Anal. Appl..

[32]  Benjamin Pfaff,et al.  Perturbation Analysis Of Optimization Problems , 2016 .

[33]  J. Pang,et al.  Strategic gaming analysis for electric power systems: an MPEC approach , 2000 .

[34]  S. M. Robinson Stability Theory for Systems of Inequalities, Part II: Differentiable Nonlinear Systems , 1976 .

[35]  K. Goh,et al.  Control system synthesis via bilinear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[36]  R. Braatz,et al.  Globally optimal robust control for systems with time-varying nonlinear perturbations , 1997 .

[37]  Jean-Pierre Aubin,et al.  Lipschitz Behavior of Solutions to Convex Minimization Problems , 1984, Math. Oper. Res..

[38]  F. Giannessi Variational Analysis and Generalized Differentiation , 2006 .

[39]  S. M. Robinson First Order Conditions for General Nonlinear Optimization , 1976 .

[40]  Defeng Sun,et al.  Semismooth Homeomorphisms and Strong Stability of Semidefinite and Lorentz Complementarity Problems , 2003, Math. Oper. Res..

[41]  J. J. Ye,et al.  Necessary Optimality Conditions for Optimization Problems with Variational Inequality Constraints , 1997, Math. Oper. Res..

[42]  Zhenyue Zhang,et al.  Optimal low-rank approximation to a correlation matrix , 2003 .

[43]  Karl Löwner Über monotone Matrixfunktionen , 1934 .

[44]  B. Mordukhovich,et al.  Nonsmooth sequential analysis in Asplund spaces , 1996 .

[45]  C. Floudas,et al.  A global optimization algorithm (GOP) for certain classes of nonconvex NLPs—I. Theory , 1990 .

[46]  Arkadi Nemirovski,et al.  Robust optimization – methodology and applications , 2002, Math. Program..

[47]  J. J. Ye Constraint Qualifications and Necessary Optimality Conditions for Optimization Problems with Variational Inequality Constraints , 2000, SIAM J. Optim..

[48]  J. Hiriart-Urruty,et al.  Sensitivity analysis of all eigenvalues of a symmetric matrix , 1995 .

[49]  R. Kellogg,et al.  A Constructive Proof of the Brouwer Fixed-Point Theorem and Computational Results , 1976 .

[50]  René Henrion,et al.  Calmness of constraint systems with applications , 2005, Math. Program..

[51]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[52]  Defeng Sun,et al.  Semismooth Matrix-Valued Functions , 2002, Math. Oper. Res..

[53]  Shaohua Pan,et al.  Approximation of rank function and its application to the nearest low-rank correlation matrix , 2013, J. Glob. Optim..

[54]  B. Curtis Eaves,et al.  On the basic theorem of complementarity , 1971, Math. Program..

[55]  Stefan Scholtes,et al.  Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity , 2000, Math. Oper. Res..

[56]  Michael L. Overton,et al.  Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices , 2015, Math. Program..

[57]  D. Luenberger,et al.  Estimation of structured covariance matrices , 1982, Proceedings of the IEEE.

[58]  Jane J. Ye,et al.  First-Order and Second-Order Conditions for Error Bounds , 2003, SIAM J. Optim..

[59]  Jane J. Ye,et al.  Optimality Conditions for Optimization Problems with Complementarity Constraints , 1999, SIAM J. Optim..

[60]  Yun-Bin Zhao,et al.  Approximation Theory of Matrix Rank Minimization and Its Application to Quadratic Equations , 2010, 1010.0851.

[61]  G. Papavassilopoulos,et al.  Biaffine matrix inequality properties and computational methods , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[62]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[63]  N. Sahinidis,et al.  Global optimization of nonconvex NLPs and MINLPs with applications in process design , 1995 .

[64]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[65]  S. M. Robinson Some continuity properties of polyhedral multifunctions , 1981 .

[66]  William Scott Hoge,et al.  A subspace identification extension to the phase correlation method [MRI application] , 2003, IEEE Transactions on Medical Imaging.

[67]  Defeng Sun,et al.  Semismoothness of solutions to generalized equations and the Moreau-Yosida regularization , 2005, Math. Program..

[68]  Jane J. Ye,et al.  Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints , 2005 .

[69]  Miriam Hodge,et al.  Fast at-the-money calibration of the Libor market model using Lagrange multipliers , 2003 .

[70]  Dan Simon,et al.  Reduced Order Kalman Filtering without Model Reduction , 2007, Control. Intell. Syst..