Composition of soluble mineralizing matrices in zooxanthellate and non-zooxanthellate scleractinian corals: Biochemical assessment of photosynthetic metabolism through the study of a skeletal feature

[1]  A. Freiwald,et al.  Taphonomy of modern deep, cold‐temperate water coral reefs , 1998 .

[2]  R. Henrich,et al.  Anatomy of a Deep-Water Coral Reef Mound from Stjernsund, West Finnmark, Northern Norway , 1997 .

[3]  A. Marshall,et al.  Calcification in Hermatypic and Ahermatypic Corals , 1996, Science.

[4]  P. Gautret,et al.  The organo-mineral structure of coral skeletons : a potential source of new criteria for Scleractinian taxonomy , 1996 .

[5]  J. Beck,et al.  Annual cycles of UCa in coral skeletons and UCa thermometry , 1995 .

[6]  Peter K. Swart,et al.  Evolution of the coral-zooxanthellae symbiosis during the Triassic: a geochemical approach , 1995, Paleobiology.

[7]  P. Gautret,et al.  Glucides et protéines de la matrice soluble des biocristaux de Scléractiniaires Acroporidés , 1995 .

[8]  S. Villiers,et al.  The -temperature relationship in coralline aragonite: Influence of variability in and skeletal growth parameters , 1994 .

[9]  J. Cole,et al.  A chemical indicator of trade wind reversal in corals from the western tropical Pacific , 1992 .

[10]  G. Wefer,et al.  Isotope paleontology: growth and composition of extant calcareous species , 1991 .

[11]  L. Fang,et al.  Why does the white tip of stony coral grow so fast without zooxanthellae? , 1989 .

[12]  S. Weiner,et al.  Acidic macromolecules associated with the mineral phase of scleractinian coral skeletons , 1988 .

[13]  E. Boyle,et al.  Cadmium in corals as a tracer of historical upwelling and industrial fallout , 1987, Nature.

[14]  B. Constantz Coral skeleton construction; a physiochemically dominated process , 1986 .

[15]  P. Swart Carbon and oxygen isotope fractionation in scleractinian corals: a review , 1983 .

[16]  I. Johnston The Ultrastructure of Skeletogenesis in Hermatypic Corals , 1980 .

[17]  L. Margulis,et al.  Evolutionary prerequisites for early Phanerozoic calcareous skeletons. , 1980, Bio Systems.

[18]  D. Taylor Nutrition of algal-invertebrate symbiosis. II. Effects of exogenous nitrogen sources on growth, photosynthesis and the rate of excretion by algal symbionts in vivo and in vitro , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[19]  L. Muscatine,et al.  ROLE OF SYMBIOTIC ALGAE (ZOOXANTHELLAE) IN CORAL CALCIFICATION , 1971 .

[20]  D. Smith,et al.  The autotrophic nutrition of symbiotic marine coelenterates with special reference to hermatypic corals. I. Movement of photosynthetic products between the symbionts , 1971, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[21]  H. Livingston,et al.  STRONTIUM AND URANIUM CONCENTRATIONS IN ARAGONITE PRECIPITATED BY SOME MODERN CORALS. , 1970 .

[22]  T. Goreau THE PHYSIOLOGY OF SKELETON FORMATION IN CORALS. I. A METHOD FOR MEASURING THE RATE OF CALCIUM DEPOSITION BY CORALS UNDER DIFFERENT CONDITIONS , 1959 .

[23]  L. Muscatine,et al.  DIRECT EVIDENCE FOR THE TRANSFER OF MATERIALS FROM SYMBIOTIC ALGAE TO THE TISSUES OF A COELENTERATE. , 1958, Proceedings of the National Academy of Sciences of the United States of America.