Stable exposure of the coreceptor-binding site in a CD4-independent HIV-1 envelope protein.

We recently derived a CD4-independent virus from HIV-1/IIIB, termed IIIBx, which interacts directly with the chemokine receptor CXCR4 to infect cells. To address the underlying mechanism, a cloned Env from the IIIBx swarm (8x) was used to produce soluble gp120. 8x gp120 bound directly to cells expressing only CXCR4, whereas binding of IIIB gp120 required soluble CD4. Using an optical biosensor, we found that CD4-induced (CD4i) epitopes recognized by mAbs 17b and 48d were more exposed on 8x than on IIIB gp120. The ability of 8x gp120 to bind directly to CXCR4 and to react with mAbs 17b and 48d in the absence of CD4 indicated that this gp120 exists in a partially triggered but stable state in which the conserved coreceptor-binding site in gp120, which overlaps with the 17b epitope, is exposed. Substitution of the 8x V3 loop with that from the R5 virus strain BaL resulted in an Env (8x-V3BaL) that mediated CD4-independent CCR5-dependent virus infection and a gp120 that bound to CCR5 in the absence of CD4. Thus, in a partially triggered Env protein, the V3 loop can change the specificity of coreceptor use but does not alter CD4 independence, indicating that these properties are dissociable. Finally, IIIBx was more sensitive to neutralization by HIV-positive human sera, a variety of anti-IIIB gp120 rabbit sera, and CD4i mAbs than was IIIB. The sensitivity of this virus to neutralization and the stable exposure of a highly conserved region of gp120 suggest new strategies for the development of antibodies and small molecule inhibitors to this functionally important domain.

[1]  William C. Olson,et al.  CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5 , 1996, Nature.

[2]  R. Doms,et al.  Identification of Determinants on a Dualtropic Human Immunodeficiency Virus Type 1 Envelope Glycoprotein That Confer Usage of CXCR4 , 1998, Journal of Virology.

[3]  Steven M. Wolinsky,et al.  The role of a mutant CCR5 allele in HIV–1 transmission and disease progression , 1996, Nature Medicine.

[4]  Gilcher Ro Human retroviruses and AIDS. , 1988 .

[5]  P. Gregersen,et al.  Apoptosis of CD8+ T cells is mediated by macrophages through interaction of HIV gp120 with chemokine receptor CXCR4 , 1998, Nature.

[6]  M. Saraste,et al.  FEBS Lett , 2000 .

[7]  J. Sodroski,et al.  Characterization of conserved human immunodeficiency virus type 1 gp120 neutralization epitopes exposed upon gp120-CD4 binding , 1993, Journal of virology.

[8]  D. Dimitrov,et al.  Evidence for Cell-Surface Association Between Fusin and the CD4-gp120 Complex in Human Cell Lines , 1996, Science.

[9]  J. Sodroski,et al.  Replication and neutralization of human immunodeficiency virus type 1 lacking the V1 and V2 variable loops of the gp120 envelope glycoprotein , 1997, Journal of virology.

[10]  L. M. Smith,et al.  Broadly neutralizing monoclonal antibodies to the V3 region of HIV-1 can be elicited by peptide immunization. , 1993, Virology.

[11]  Marc Parmentier,et al.  Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene , 1996, Nature.

[12]  M. Kielian,et al.  Membrane fusion and the alphavirus life cycle. , 1995, Advances in virus research.

[13]  R. Doms,et al.  CD4-independent, CCR5-dependent infection of brain capillary endothelial cells by a neurovirulent simian immunodeficiency virus strain. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[14]  J. Sodroski,et al.  Involvement of the V1/V2 variable loop structure in the exposure of human immunodeficiency virus type 1 gp120 epitopes induced by receptor binding , 1995, Journal of virology.

[15]  J. Sodroski,et al.  Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody , 1998, Nature.

[16]  R. F. Smith,et al.  Human retroviruses and aids, 1992 , 1992 .

[17]  B. Cullen,et al.  Identification of the envelope V3 loop as the primary determinant of cell tropism in HIV-1. , 1991, Science.

[18]  D. Littman,et al.  Fusion-competent vaccines: broad neutralization of primary isolates of HIV. , 1999, Science.

[19]  Bryan R. Cullen,et al.  Multiple Residues Contribute to the Inability of Murine CCR-5 To Function as a Coreceptor for Macrophage-Tropic Human Immunodeficiency Virus Type 1 Isolates , 1998, Journal of Virology.

[20]  Joseph Sodroski,et al.  CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5 , 1996, Nature.

[21]  A. Garzino-Demo,et al.  The V3 domain of the HIV–1 gp120 envelope glycoprotein is critical for chemokine–mediated blockade of infection , 1996, Nature Medicine.

[22]  Stephen C. Peiper,et al.  Identification of CXCR4 Domains That Support Coreceptor and Chemokine Receptor Functions , 1999, Journal of Virology.

[23]  J. Schlessinger,et al.  Signal Transduction Due to HIV-1 Envelope Interactions with Chemokine Receptors CXCR4 or CCR5 , 1997, The Journal of experimental medicine.

[24]  S. Zolla-Pazner,et al.  Envelope glycoproteins from human immunodeficiency virus types 1 and 2 and simian immunodeficiency virus can use human CCR5 as a coreceptor for viral entry and make direct CD4-dependent interactions with this chemokine receptor , 1997, Journal of virology.

[25]  J J Goedert,et al.  Genetic Restriction of HIV-1 Infection and Progression to AIDS by a Deletion Allele of the CKR5 Structural Gene , 1996, Science.

[26]  A. Loyter,et al.  Quantitative determination of virus‐membrane fusion events Fusion of influenza virions with plasma membranes and membranes of endocytic vesicles in living cultured cells , 1987, FEBS letters.

[27]  B. Chesebro,et al.  Effects of CCR5 and CD4 Cell Surface Concentrations on Infections by Macrophagetropic Isolates of Human Immunodeficiency Virus Type 1 , 1998, Journal of Virology.

[28]  R. Doms,et al.  Cell-cell fusion assay to study role of chemokine receptors in human immunodeficiency virus type 1 entry. , 1997, Methods in enzymology.

[29]  S. Nisole,et al.  Spontaneous Mutations in the env Gene of the Human Immunodeficiency Virus Type 1 NDK Isolate Are Associated with a CD4-Independent Entry Phenotype , 1998, Journal of Virology.

[30]  R. Doms,et al.  HIV type I envelope determinants for use of the CCR2b, CCR3, STRL33, and APJ coreceptors. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Ying Sun,et al.  The β-Chemokine Receptors CCR3 and CCR5 Facilitate Infection by Primary HIV-1 Isolates , 1996, Cell.

[32]  R. Doms,et al.  CD4-Independent Infection by HIV-2 Is Mediated by Fusin/CXCR4 , 1996, Cell.

[33]  R. Means,et al.  A role for carbohydrates in immune evasion in AIDS , 1998, Nature Medicine.

[34]  P. Luciw,et al.  Human immunodeficiency virus type 1 coreceptors participate in postentry stages in the virus replication cycle and function in simian immunodeficiency virus infection , 1997, Journal of virology.

[35]  K. Peden,et al.  CD4, CXCR-4, and CCR-5 dependencies for infections by primary patient and laboratory-adapted isolates of human immunodeficiency virus type 1 , 1997, Journal of virology.

[36]  Ying Sun,et al.  A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding. , 1998, Science.

[37]  R. Connor,et al.  Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes. , 1995, Virology.

[38]  Richard A Koup,et al.  Homozygous Defect in HIV-1 Coreceptor Accounts for Resistance of Some Multiply-Exposed Individuals to HIV-1 Infection , 1996, Cell.

[39]  Peter D. Kwong,et al.  The antigenic structure of the HIV gp120 envelope glycoprotein , 1998, Nature.

[40]  B. Cullen,et al.  The ability of HIV type 1 to use CCR-3 as a coreceptor is controlled by envelope V1/V2 sequences acting in conjunction with a CCR-5 tropic V3 loop. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Isma'il ibn Ali al-Sadiq AIDS , 1986, The Lancet.

[42]  B. Chesebro,et al.  Selective employment of chemokine receptors as human immunodeficiency virus type 1 coreceptors determined by individual amino acids within the envelope V3 loop , 1997, Journal of virology.

[43]  L. Stamatatos,et al.  An Envelope Modification That Renders a Primary, Neutralization-Resistant Clade B Human Immunodeficiency Virus Type 1 Isolate Highly Susceptible to Neutralization by Sera from Other Clades , 1998, Journal of Virology.

[44]  R. Weiss,et al.  CD4-independent infection by HIV-2 (ROD/B): use of the 7-transmembrane receptors CXCR-4, CCR-3, and V28 for entry. , 1997, Virology.

[45]  D. Weissman,et al.  Macrophage-tropic HIV and SIV envelope proteins induce a signal through the CCR5 chemokine receptor , 1997, Nature.

[46]  V. Georgiev Virology , 1955, Nature.