Error Estimations for Total Variation Type Regularization

This paper provides several error estimations for total variation (TV) type regularization, which arises in a series of areas, for instance, signal and imaging processing, machine learning, etc. In this paper, some basic properties of the minimizer for the TV regularization problem such as stability, consistency and convergence rate are fully investigated. Both a priori and a posteriori rules are considered in this paper. Furthermore, an improved convergence rate is given based on the sparsity assumption. The problem under the condition of non-sparsity, which is common in practice, is also discussed; the results of the corresponding convergence rate are also presented under certain mild conditions.

[1]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[2]  R. Nowak,et al.  Compressed Sensing for Networked Data , 2008, IEEE Signal Processing Magazine.

[3]  Tran Nhan Tam Quyen,et al.  Convergence rates for total variation regularization of coefficient identification problems in elliptic equations II , 2012 .

[4]  Adil M. Bagirov,et al.  Penalty functions with a small penalty parameter , 2002, Optim. Methods Softw..

[5]  A. S. Leonov,et al.  On the total-variation convergence of regularizing algorithms for ill-posed problems , 2007 .

[6]  Odo Diekmann,et al.  Nonlinear diffusion problems , 1976 .

[7]  Gang Liu,et al.  Total variation with overlapping group sparsity for speckle noise reduction , 2016, Neurocomputing.

[8]  OsherStanley,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[9]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[10]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[11]  Bernd Hofmann,et al.  Regularization properties of the sequential discrepancy principle for Tikhonov regularization in Banach spaces , 2014 .

[12]  Bernd Hofmann,et al.  Parameter choice in Banach space regularization under variational inequalities , 2012 .

[13]  S. Osher,et al.  Convergence rates of convex variational regularization , 2004 .

[14]  O. Scherzer,et al.  FA ] 2 9 Ju l 2 00 8 Sparse Regularization with l q Penalty Term , 2008 .

[15]  Ronny Ramlau,et al.  Convergence rates for Morozov's discrepancy principle using variational inequalities , 2011 .

[16]  Hao Jiang,et al.  Iteratively Linearized Reweighted Alternating Direction Method of Multipliers for a Class of Nonconvex Problems , 2017, IEEE Transactions on Signal Processing.

[17]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[18]  A. Tikhonov,et al.  Nonlinear Ill-Posed Problems , 1997 .

[19]  B. Hofmann,et al.  The impact of a curious type of smoothness conditions on convergence rates in l1-regularization , 2013 .

[20]  D. Lorenz,et al.  Elastic-net regularization: error estimates and active set methods , 2009, 0905.0796.

[21]  O. Scherzer,et al.  Necessary and sufficient conditions for linear convergence of ℓ1‐regularization , 2011 .

[22]  Jens Flemming,et al.  A unified approach to convergence rates for ℓ1-regularization and lacking sparsity , 2015 .

[23]  Martin Burger,et al.  Convergence rates in $\mathbf{\ell^1}$-regularization if the sparsity assumption fails , 2012 .

[24]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[25]  P. Maass,et al.  Sparsity regularization for parameter identification problems , 2012 .

[26]  K. Bredies,et al.  Linear Convergence of Iterative Soft-Thresholding , 2007, 0709.1598.

[27]  Dirk A. Lorenz,et al.  Beyond convergence rates: exact recovery with the Tikhonov regularization with sparsity constraints , 2010, 1001.3276.

[28]  A. Jakusev,et al.  NONLINEAR DIFFUSION PROBLEMS IN IMAGE SMOOTHING , 2022 .

[29]  Deanna Needell,et al.  Stable Image Reconstruction Using Total Variation Minimization , 2012, SIAM J. Imaging Sci..

[30]  P. M. Berg,et al.  A total variation enhanced modified gradient algorithm for profile reconstruction , 1995 .

[31]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[32]  D. Lorenz,et al.  Convergence rates and source conditions for Tikhonov regularization with sparsity constraints , 2008, 0801.1774.

[33]  Tran Nhan Tam Quyen,et al.  Convergence rates for total variation regularization of coefficient identification problems in elliptic equations I , 2011 .

[34]  Esther Hans,et al.  Global convergence of damped semismooth Newton methods for ℓ1 Tikhonov regularization , 2015 .

[35]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[36]  Paul Tseng,et al.  Error Bound and Convergence Analysis of Matrix Splitting Algorithms for the Affine Variational Inequality Problem , 1992, SIAM J. Optim..

[37]  S. Osher,et al.  Image restoration: Total variation, wavelet frames, and beyond , 2012 .

[38]  Jian-Feng Cai,et al.  Split Bregman Methods and Frame Based Image Restoration , 2009, Multiscale Model. Simul..

[39]  D. L. Donoho,et al.  Compressed sensing , 2006, IEEE Trans. Inf. Theory.

[40]  P. Tseng,et al.  On the convergence of the coordinate descent method for convex differentiable minimization , 1992 .

[41]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[42]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[43]  Bangti Jin,et al.  Iterative parameter choice by discrepancy principle , 2012 .

[44]  M. Lustig,et al.  Compressed Sensing MRI , 2008, IEEE Signal Processing Magazine.

[45]  Lizhi Cheng,et al.  Alternating direction method of multipliers with difference of convex functions , 2018, Adv. Comput. Math..

[46]  Bangti Jin,et al.  Heuristic Parameter-Choice Rules for Convex Variational Regularization Based on Error Estimates , 2010, SIAM J. Numer. Anal..

[47]  Guarantees of total variation minimization for signal recovery , 2015 .

[48]  Bangti Jin,et al.  A duality-based splitting method for ` 1-TV image restoration with automatic regularization parameter choice ∗ , 2009 .

[49]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[50]  I. Daubechies,et al.  Iteratively reweighted least squares minimization for sparse recovery , 2008, 0807.0575.