Multilevel optimization for the placement of piezo-actuators on plate structures for active vibration control using modified heuristic genetic algorithm

The present work considers with the optimal placement of piezoelectric actuators on a thin plate via modified control matrix and singular value decomposition (MCSVD) approach using Modified Heuristic Genetic Algorithm (MHGA). Optimal placement of piezoelectric actuators is investigated to suppress the first six modes on cantilever plate. Vibration suppression has been studied for cantilever plate with piezoelectric patches in optimal positions using LQR (Linear Quadratic regulator) scheme. It is observed that developed present approach has given the greater closed loop damping ratio and lesser computational requirements.

[1]  S Y Wang,et al.  Weighted energy linear quadratic regulator vibration control of piezoelectric composite plates , 2002 .

[2]  Young-Hun Lim Finite-element simulation of closed loop vibration control of a smart plate under transient loading , 2003 .

[3]  K. Ramesh Kumar,et al.  The optimal location of piezoelectric actuators and sensors for vibration control of plates , 2007 .

[4]  E. Crawley,et al.  Use of piezoelectric actuators as elements of intelligent structures , 1987 .

[5]  Singiresu S Rao,et al.  Optimal placement of actuators in actively controlled structures using genetic algorithms , 1991 .

[6]  Gian Bhushan,et al.  Optimal Placement of Piezoelectric Actuators on Plate Structures for Active Vibration Control Using Modified Control Matrix and Singular Value Decomposition Approach , 2014 .

[7]  Debabrata Chakraborty,et al.  Optimal vibration control of smart fiber reinforced composite shell structures using improved genetic algorithm , 2009 .

[8]  Stephen J. Elliott,et al.  Natural algorithms for choosing source locations in active control systems , 1995 .

[9]  Junjiro Onoda,et al.  Actuator Placement Optimization by Genetic and Improved Simulated Annealing Algorithms , 1993 .

[10]  Wodek Gawronski Actuator and sensor placement for structural testing and control , 1997 .

[11]  R. J. Wynne,et al.  Modelling and optimal placement of piezoelectric actuators in isotropic plates using genetic algorithms , 1999 .

[12]  L. Gallimard,et al.  Optimal piezoelectric actuator and sensor location for active vibration control, using genetic algorithm , 2010 .

[13]  L. Gallimard,et al.  Optimization of Piezoelectric Sensors Location and Number Using a Genetic Algorithm , 2011 .

[14]  Chien Ming Wang,et al.  A controllability index for optimal design of piezoelectric actuators in vibration control of beam structures , 2001 .

[15]  In Lee,et al.  Optimal placement of piezoelectric sensors and actuators for vibration control of a composite plate using genetic algorithms , 1999 .

[16]  A. H. Daraji,et al.  Optimal placement of sensors and actuators for active vibration reduction of a flexible structure using a genetic algorithm based on modified Hinfinity , 2012 .

[17]  Horn-Sen Tzou,et al.  A Study of Segmentation of Distributed Piezoelectric Sensors and Actuators, Part I: Theoretical Analysis , 1994 .

[18]  Hongwei Zhang,et al.  A float-encoded genetic algorithm technique for integrated optimization of piezoelectric actuator and sensor placement and feedback gains , 2000 .