Variable stiffness biological and bio-inspired materials

This article reviews the main mechanisms of stiffness variation typically found in nature. The temporal changes in stiffness may be fully or partially reversible, or completely irreversible, and can be very slow or fast in time depending on the strategy adopted to alter the mechanical properties. It is also possible to observe changes in the stiffness in order to recover the original mechanical properties in damaged natural materials by means of self-healing mechanisms. In addition to stiffness variations in time, natural materials can also exhibit stiffness changes in space. These variations can be represented by alterations in the spatial distribution of the microscopic constituents across multiple hierarchical scales, from very small physical scales to large macroscopic dimensions. In order to optimise the strength and multifunctionality of these materials, spatial changes can also occur over larger areas at one single scale. In addition, several examples are provided to illustrate how natural materials have been exploited further in order to develop new bio-inspired materials.

[1]  S. Nutt,et al.  A Thermally Re-mendable Cross-Linked Polymeric Material , 2002, Science.

[2]  Richard Weinkamer,et al.  Mechanical adaptation of biological materials — The examples of bone and wood , 2011 .

[3]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[4]  L. SalméNN,et al.  Moisture-dependent thermal softening of paper, evaluated by its elastic modulus. , 1980 .

[5]  S. Rowan,et al.  Stimuli-responsive, mechanically-adaptive polymer nanocomposites , 2011 .

[6]  Markus J. Buehler,et al.  Tu(r)ning weakness to strength , 2010 .

[7]  Christopher Griffin,et al.  Pressure deflection behavior of candidate materials for a morphing wing , 2007 .

[8]  Markus J. Buehler,et al.  Multiscale mechanics of biological and biologically inspired materials and structures , 2010 .

[9]  Frederick R. Eirich,et al.  Science and Technology of Rubber , 2012 .

[10]  Daniel J. Inman,et al.  A Review of Morphing Aircraft , 2011 .

[11]  João F Mano,et al.  Biomimetic design of materials and biomaterials inspired by the structure of nacre , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  Anna C. Balazs,et al.  Entropy-driven segregation of nanoparticles to cracks in multilayered composite polymer structures , 2006 .

[13]  Steve Weiner,et al.  Structure and mechanical properties of the soft zone separating bulk dentin and enamel in crowns of human teeth: insight into tooth function. , 2006, Journal of structural biology.

[14]  D. Tyler,et al.  Stimuli-Responsive Polymer Nanocomposites Inspired by the Sea Cucumber Dermis , 2008, Science.

[15]  Justin R. Kumpfer,et al.  Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers. , 2011, Journal of the American Chemical Society.

[16]  S. Tadokoro,et al.  Electroactive Polymers for Robotic Applications , 2007 .

[17]  Stuart J. Rowan,et al.  Stimuli-responsive mechanically adaptive polymer nanocomposites. , 2010, ACS applied materials & interfaces.

[18]  Reza Rabiei,et al.  Toughness amplification in natural composites , 2011 .

[19]  I. Bond,et al.  'Bleeding composites' - damage detection and self-repair using a biomimetic approach , 2005 .

[20]  N. L. Salmén,et al.  The influence of water on the glass transition temperature of cellulose , 1977 .

[21]  P. Zhou,et al.  Toughness of Spider Silk at High and Low Temperatures , 2005 .

[22]  Brian R. Lawn,et al.  Teeth: Among Nature's Most Durable Biocomposites , 2010 .

[23]  P. Curtis,et al.  A smart repair system for polymer matrix composites , 2001 .

[24]  Ludwig J. Gauckler,et al.  Bioinspired Design and Assembly of Platelet Reinforced Polymer Films , 2008, Science.

[25]  Veronica J. Neiman,et al.  Synthetic bio-actuators and their applications in biomedicine , 2011 .

[26]  T. Sinkjaer,et al.  Muscle stiffness in human ankle dorsiflexors: intrinsic and reflex components. , 1988, Journal of neurophysiology.

[27]  L. Slade,et al.  Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. , 1991, Critical reviews in food science and nutrition.

[28]  Christopher L. Lewis,et al.  Dynamic Mechanical Behavior of Photo-Cross-linked Shape-Memory Elastomers , 2011 .

[29]  R S Trask,et al.  Minimum mass vascular networks in multifunctional materials , 2008, Journal of The Royal Society Interface.

[30]  R. Hooke Micrographia: Or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses With Observations and Inquiries Thereupon , 2003 .

[31]  Gerhard A. Holzapfel,et al.  Computational Biomechanics of Soft Biological Tissue , 2004 .

[32]  Markus J. Buehler,et al.  Nanostructure and molecular mechanics of spider dragline silk protein assemblies , 2010, Journal of The Royal Society Interface.

[33]  Christoph Weder,et al.  Development of a stimuli-responsive polymer nanocomposite toward biologically optimized, MEMS-based neural probes , 2011 .

[34]  A. P. Jackson,et al.  The mechanical design of nacre , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[35]  R S Trask,et al.  Self-healing polymer composites: mimicking nature to enhance performance , 2007, Bioinspiration & biomimetics.

[36]  S. Tadokoro,et al.  Electroactive Polymers for Robotic Applications: Artificial Muscles and Sensors , 2007 .

[37]  Ajay Vikram Singh,et al.  Bio-inspired approaches to design smart fabrics , 2012 .

[38]  Stuart J. Rowan,et al.  Biomimetic mechanically adaptive nanocomposites , 2010 .

[39]  Michael I. Friswell,et al.  Multi-scale finite element model for a new material inspired by the mechanics and structure of wood cell-walls , 2012 .

[40]  Yuh J. Chao,et al.  Nanoscale Structural and Mechanical Characterization of a Natural Nanocomposite Material: The Shell of Red Abalone , 2004 .

[41]  S. Wiederhorn,et al.  Crack Healing in Glass , 1970 .

[42]  Huajian Gao,et al.  Multi-scale cohesive laws in hierarchical materials , 2007 .

[43]  I. Rangelow,et al.  Hierarchical interconnections in the nano-composite material bone: Fibrillar cross-links resist fracture on several length scales , 2006 .

[44]  Majid Minary-Jolandan,et al.  Nanomechanical heterogeneity in the gap and overlap regions of type I collagen fibrils with implications for bone heterogeneity. , 2009, Biomacromolecules.

[45]  Jacqueline A. Cutroni,et al.  Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture , 2005, Nature materials.

[46]  I. Bond,et al.  A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility , 2005 .

[47]  Paul K. Hansma,et al.  Bone indentation recovery time correlates with bond reforming time , 2001, Nature.

[48]  R. Martin Porosity and specific surface of bone. , 1984, Critical reviews in biomedical engineering.

[49]  Bertrand Audoin,et al.  Relaxation dynamics in single polymer microcapsules probed with laser-generated GHz acoustic waves , 2012 .

[50]  S. Luding,et al.  Discrete element modeling of self-healing processes in damaged particulate materials , 2007 .

[51]  de Jeff Hosson,et al.  Self Healing Materials. An Alternative Approach to 20 Centuries of Materials Science , 2007 .

[52]  I. Burgert,et al.  Actuation systems in plants as prototypes for bioinspired devices , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[53]  Huajian Gao,et al.  The strength limit in a bio-inspired metallic nanocomposite , 2008 .

[54]  Naoki Takano,et al.  Intelligent Material Systems Using Epoxy Particles to Repair Microcracks and Delamination Damage in GFRP , 1999 .

[55]  Richard Weinkamer,et al.  Artful interfaces within biological materials , 2011 .

[56]  J. Ralphs,et al.  The skeletal attachment of tendons--tendon "entheses". , 2002, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[57]  Jozef Keckes,et al.  Cell-wall recovery after irreversible deformation of wood , 2003, Nature materials.

[58]  R. Langer,et al.  Light-induced shape-memory polymers , 2005, Nature.

[59]  J. G. Williams,et al.  Fracture mechanics studies of crack healing and welding of polymers , 1981 .

[60]  Carolyn M. Dry,et al.  Procedures developed for self-repair of polymer matrix composite materials , 1996 .

[61]  S. Stanzl-Tschegg,et al.  Wood as a bioinspiring material , 2011 .

[62]  W. J. S. NAUNTON,et al.  Science and Technology of Rubber , 1959, Nature.

[63]  Anna C Balazs,et al.  Using nanoparticles to create self-healing composites. , 2004, The Journal of chemical physics.

[64]  G. Plaza,et al.  Thermo‐hygro‐mechanical behavior of spider dragline silk: Glassy and rubbery states , 2006 .

[65]  Peter Fratzl,et al.  Cellulose and collagen: from fibres to tissues , 2003 .

[66]  Manuel Elices,et al.  The hidden link between supercontraction and mechanical behavior of spider silks. , 2011, Journal of the mechanical behavior of biomedical materials.

[67]  S. Takagi,et al.  Light-Induced Changes in the Behavior of Chloroplasts under Centrifugation in Vallisneria Epidermal Cells , 1991 .

[68]  Christian Hellmich,et al.  Development and experimental validation of a continuum micromechanics model for the elasticity of wood , 2005 .

[69]  R. Ritchie,et al.  Mechanistic fracture criteria for the failure of human cortical bone , 2003, Nature materials.

[70]  Mario Viani,et al.  Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites , 1999, Nature.

[71]  M. Inagaki,et al.  Work of Fracture and Crack Healing in Glass , 1985 .

[72]  R. Lakes Materials with structural hierarchy , 1993, Nature.

[73]  W. Cousins Elastic modulus of lignin as related to moisture content , 1976, Wood Science and Technology.

[74]  R. Ritchie,et al.  Tough, Bio-Inspired Hybrid Materials , 2008, Science.

[75]  Thomas Speck,et al.  Stiffness gradients in vascular bundles of the palm Washingtonia robusta , 2008, Proceedings of the Royal Society B: Biological Sciences.

[76]  Luigi Preziosi,et al.  Modelling of Biological Materials , 2007 .

[77]  A. H. Nissan The elastic modulus of lignin as related to moisture content , 1977, Wood Science and Technology.

[78]  Francois Barthelat,et al.  Nacre from mollusk shells: a model for high-performance structural materials , 2010, Bioinspiration & biomimetics.

[79]  Ernie Havens,et al.  Light-activated shape memory polymers and associated applications , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[80]  D. Fyhrie,et al.  Collagen-bridged microcrack model for cortical bone tensile strength , 2001 .

[81]  Christoph Weder,et al.  Stress-transfer in anisotropic and environmentally adaptive cellulose whisker nanocomposites. , 2010, Biomacromolecules.

[82]  Yasuaki Seki,et al.  Biological materials: Structure and mechanical properties , 2008 .

[83]  I H Kalfas,et al.  Principles of bone healing. , 2001, Neurosurgical focus.

[84]  F. Barth,et al.  Biomaterial systems for mechanosensing and actuation , 2009, Nature.

[85]  Sunita P Ho,et al.  The biomechanical characteristics of the bone-periodontal ligament-cementum complex. , 2010, Biomaterials.

[86]  Interfaces in repair, recycling, joining and manufacturing of polymers and polymer composites , 1999 .

[87]  Stuart J. Rowan,et al.  Bioinspired Mechanically Adaptive Polymer Nanocomposites with Water-Activated Shape-Memory Effect , 2011 .

[88]  Alberto Redaelli,et al.  Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. , 2011, Nano letters.

[89]  Huajian Gao,et al.  On optimal hierarchy of load-bearing biological materials , 2011, Proceedings of the Royal Society B: Biological Sciences.

[90]  M. Horstemeyer,et al.  A study on the structure and mechanical behavior of the Terrapene carolina carapace: A pathway to design bio-inspired synthetic composites , 2009 .

[91]  Lennart Salmén,et al.  Micromechanical understanding of the cell-wall structure. , 2004, Comptes rendus biologies.

[92]  J. Hart Plant tropisms and other growth movements , 1990 .

[93]  N. Sottos,et al.  Autonomic healing of polymer composites , 2001, Nature.

[94]  Huajian Gao Application of Fracture Mechanics Concepts to Hierarchical Biomechanics of Bone and Bone-like Materials , 2006 .

[95]  Martin Rb Porosity and specific surface of bone. , 1984 .

[96]  I. D. Cave Modelling moisture-related mechanical properties of wood Part I: Properties of the wood constituents , 1978, Wood Science and Technology.

[97]  D'arcy W. Thompson,et al.  On Growth and Form , 1917, Nature.

[98]  Stuart J. Rowan,et al.  Bio-inspired mechanically-adaptive nanocomposites derived from cotton cellulose whiskers , 2010 .

[99]  R. Ritchie,et al.  On the Mechanistic Origins of Toughness in Bone , 2010 .

[100]  A. Clare,et al.  Tensile and dynamic mechanical analysis of the distal portion of mussel (Mytilus edulis) byssal threads , 2007, Journal of The Royal Society Interface.

[101]  A. Palazoglu,et al.  Nanoscale heterogeneity promotes energy dissipation in bone. , 2007, Nature materials.

[102]  E. Dumont Bone density and the lightweight skeletons of birds , 2010, Proceedings of the Royal Society B: Biological Sciences.

[103]  M. Peleg A Model of Mechanical Changes in Biomaterials at and around Their Glass Transition , 1994 .

[104]  Xiaodong He,et al.  The effect of synthesis condition on physical properties of epoxy‐containing microcapsules , 2012 .

[105]  Francois Barthelat,et al.  Merger of structure and material in nacre and bone - Perspectives on de novo biomimetic materials , 2009 .

[106]  U. Vaidya,et al.  Parametric studies on self-repairing approaches for resin infused composites subjected to low velocity impact , 1999 .

[107]  S. V. D. Zwaag Self healing materials : an alternative approach to 20 centuries of materials science , 2007 .

[108]  W. Cousins Young's modulus of hemicellulose as related to moisture content , 1978, Wood Science and Technology.

[109]  Walter Voit,et al.  Triple-Shape Memory Polymers Based on Self-Complementary Hydrogen Bonding. , 2012, Macromolecules.

[110]  D C D Speirs,et al.  An approach to the mechanical constitutive modelling of arterial tissue based on homogenization and optimization. , 2008, Journal of biomechanics.

[111]  Qunfeng Cheng,et al.  Layered nanocomposites inspired by the structure and mechanical properties of nacre. , 2012, Chemical Society reviews.

[112]  R. Wool,et al.  A theory crack healing in polymers , 1981 .

[113]  D. Tuncaboylu,et al.  Tough and Self-Healing Hydrogels Formed via Hydrophobic Interactions , 2011 .

[114]  P. Fratzl,et al.  Graded Microstructure and Mechanical Properties of Human Crown Dentin , 2001, Calcified Tissue International.

[115]  Lihong V. Wang,et al.  A Facile and General Method for the Encapsulation of Different Types of Imaging Contrast Agents Within Micrometer‐Sized Polymer Beads , 2012, Advanced functional materials.

[116]  W. G. van Doorn,et al.  Flower opening and closure: a review. , 2003, Journal of experimental botany.

[117]  Sanboh Lee,et al.  Ethanol‐induced crack healing in poly(methyl methacrylate) , 1994 .

[118]  R S Trask,et al.  Bioinspired engineering study of Plantae vascules for self-healing composite structures , 2010, Journal of The Royal Society Interface.