Behavioral / Cognitive Neural Representations of Contextual Guidance in Visual Search of Real-World Scenes

Tim J. Preston,1,2 Fei Guo,1,2 Koel Das,1,2,3 Barry Giesbrecht,1,2 and Miguel P. Eckstein1,2 1Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California 39106-9660, 2Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, California 93106-5100 and 3Indian Institute of Science Education and Research, Kolkata

[1]  R. Ptak The Frontoparietal Attention Network of the Human Brain , 2012, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[2]  Katharina N. Seidl,et al.  Neural Evidence for Distracter Suppression during Visual Search in Real-World Scenes , 2012, The Journal of Neuroscience.

[3]  M. Eckstein,et al.  Feature-Independent Neural Coding of Target Detection during Search of Natural Scenes , 2012, The Journal of Neuroscience.

[4]  Russell A. Epstein,et al.  Constructing scenes from objects in human occipitotemporal cortex , 2011, Nature Neuroscience.

[5]  Miguel P Eckstein,et al.  Object co-occurrence serves as a contextual cue to guide and facilitate visual search in a natural viewing environment. , 2011, Journal of vision.

[6]  S. Kastner,et al.  A neural basis for real-world visual search in human occipitotemporal cortex , 2011, Proceedings of the National Academy of Sciences.

[7]  M. Carrasco Visual attention: The past 25 years , 2011, Vision Research.

[8]  Jiye G. Kim,et al.  The Benefit of Object Interactions Arises in the Lateral Occipital Cortex Independent of Attentional Modulation from the Intraparietal Sulcus: A Transcranial Magnetic Stimulation Study , 2011, The Journal of Neuroscience.

[9]  A. Pouget,et al.  Behavior and neural basis of near-optimal visual search , 2011, Nature Neuroscience.

[10]  M. Castelhano,et al.  Scene context influences without scene gist: Eye movements guided by spatial associations in visual search , 2011, Psychonomic bulletin & review.

[11]  Dwight J. Kravitz,et al.  Real-World Scene Representations in High-Level Visual Cortex: It's the Spaces More Than the Places , 2011, The Journal of Neuroscience.

[12]  Miguel P Eckstein,et al.  Visual search: a retrospective. , 2011, Journal of vision.

[13]  Michelle R. Greene,et al.  Visual search in scenes involves selective and nonselective pathways , 2011, Trends in Cognitive Sciences.

[14]  Soojin Park,et al.  Disentangling Scene Content from Spatial Boundary: Complementary Roles for the Parahippocampal Place Area and Lateral Occipital Complex in Representing Real-World Scenes , 2011, The Journal of Neuroscience.

[15]  J. Bisley The neural basis of visual attention , 2011, The Journal of physiology.

[16]  Geraint Rees,et al.  Decoding the neural correlates of consciousness. , 2010, Current opinion in neurology.

[17]  Jiye G. Kim,et al.  Where do objects become scenes? , 2011, Cerebral cortex.

[18]  M. Castelhano,et al.  The relative contribution of scene context and target features to visual search in scenes , 2010, Attention, perception & psychophysics.

[19]  J. Serences,et al.  Spatial attention improves the quality of population codes in human visual cortex. , 2010, Journal of neurophysiology.

[20]  Krista A. Ehinger,et al.  Modeling visual search in a thousand scenes: The roles of saliency, target features, and scene context , 2010 .

[21]  Pietro Perona,et al.  Optimal reward harvesting in complex perceptual environments , 2010, Proceedings of the National Academy of Sciences.

[22]  S. Kastner,et al.  Topographic maps in human frontal and parietal cortex , 2009, Trends in Cognitive Sciences.

[23]  Soojin Park,et al.  Different roles of the parahippocampal place area (PPA) and retrosplenial cortex (RSC) in panoramic scene perception , 2009, NeuroImage.

[24]  Matthew F. Peterson,et al.  Statistical decision theory to relate neurons to behavior in the study of covert visual attention , 2009, Vision Research.

[25]  Li Fei-Fei,et al.  Neural mechanisms of rapid natural scene categorization in human visual cortex , 2009, Nature.

[26]  M. Corbetta,et al.  Top-Down Control of Human Visual Cortex by Frontal and Parietal Cortex in Anticipatory Visual Spatial Attention , 2008, The Journal of Neuroscience.

[27]  M. Bar,et al.  Scenes Unseen: The Parahippocampal Cortex Intrinsically Subserves Contextual Associations, Not Scenes or Places Per Se , 2008, The Journal of Neuroscience.

[28]  Moshe Bar,et al.  Integrated Contextual Representation for Objects' Identities and Their Locations , 2008, Journal of Cognitive Neuroscience.

[29]  David C. Zhu,et al.  Full Scenes produce more activation than Close-up Scenes and Scene-Diagnostic Objects in parahippocampal and retrosplenial cortex: An fMRI study , 2008, Brain and Cognition.

[30]  S. Kastner,et al.  Two hierarchically organized neural systems for object information in human visual cortex , 2008, Nature Neuroscience.

[31]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[32]  J. Gold,et al.  The neural basis of decision making. , 2007, Annual review of neuroscience.

[33]  Ivan N Pigarev,et al.  Neural Mechanisms of Visual Attention: How Top-Down Feedback Highlights Relevant Locations , 2007, Science.

[34]  Antonio Torralba,et al.  Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. , 2006, Psychological review.

[35]  Russell A. Epstein,et al.  Differential parahippocampal and retrosplenial involvement in three types of visual scene recognition. , 2006, Cerebral cortex.

[36]  Gregory J. Zelinsky,et al.  Scene context guides eye movements during visual search , 2006, Vision Research.

[37]  Alex R. Wade,et al.  Extended Concepts of Occipital Retinotopy , 2005 .

[38]  Miguel P Eckstein,et al.  Attentional Cues in Real Scenes, Saccadic Targeting, and Bayesian Priors , 2005, Psychological science.

[39]  D. Heeger,et al.  Topographic maps of visual spatial attention in human parietal cortex. , 2005, Journal of neurophysiology.

[40]  M. Chun,et al.  Attentional Modulation of Learning-Related Repetition Attenuation Effects in Human Parahippocampal Cortex , 2005, The Journal of Neuroscience.

[41]  Wilson S. Geisler,et al.  Optimal eye movement strategies in visual search , 2005, Nature.

[42]  M. Bar Visual objects in context , 2004, Nature Reviews Neuroscience.

[43]  B Giesbrecht,et al.  Neural mechanisms of top-down control during spatial and feature attention , 2003, NeuroImage.

[44]  M. Bar,et al.  Cortical Analysis of Visual Context , 2003, Neuron.

[45]  Ravi S. Menon,et al.  Human fMRI evidence for the neural correlates of preparatory set , 2002, Nature Neuroscience.

[46]  S. Yantis,et al.  Transient neural activity in human parietal cortex during spatial attention shifts , 2002, Nature Neuroscience.

[47]  M. Hepp-Reymond,et al.  Reproducibility of primary motor cortex somatotopy under controlled conditions. , 2002, AJNR. American journal of neuroradiology.

[48]  J. Maunsell,et al.  The role of attention in visual processing. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[49]  Geoffrey M. Boynton,et al.  Efficient Design of Event-Related fMRI Experiments Using M-Sequences , 2002, NeuroImage.

[50]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[51]  Z Kourtzi,et al.  Representation of Perceived Object Shape by the Human Lateral Occipital Complex , 2001, Science.

[52]  N. Kanwisher,et al.  The lateral occipital complex and its role in object recognition , 2001, Vision Research.

[53]  R. Tootell,et al.  Where is 'dorsal V4' in human visual cortex? Retinotopic, topographic and functional evidence. , 2001, Cerebral cortex.

[54]  K. Grill-Spector,et al.  The dynamics of object-selective activation correlate with recognition performance in humans , 2000, Nature Neuroscience.

[55]  Preeti Verghese,et al.  The psychophysics of visual search , 2000, Vision Research.

[56]  M. Erb,et al.  fMRI Evaluation of Somatotopic Representation in Human Primary Motor Cortex , 2000, NeuroImage.

[57]  G. Mangun,et al.  The neural mechanisms of top-down attentional control , 2000, Nature Neuroscience.

[58]  M. Corbetta,et al.  Voluntary orienting is dissociated from target detection in human posterior parietal cortex , 2000, Nature Neuroscience.

[59]  E. DeYoe,et al.  A physiological correlate of the 'spotlight' of visual attention , 1999, Nature Neuroscience.

[60]  D. Heeger,et al.  Spatial attention affects brain activity in human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Leslie G. Ungerleider,et al.  Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. , 1998, Science.

[62]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[63]  J. Wolfe,et al.  What Can 1 Million Trials Tell Us About Visual Search? , 1998 .

[64]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[65]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[66]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[67]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[68]  M Corbetta,et al.  Attentional modulation of neural processing of shape, color, and velocity in humans. , 1990, Science.

[69]  P F Judy,et al.  Detection of noisy visual targets: Models for the effects of spatial uncertainty and signal-to-noise ratio , 1981, Perception & psychophysics.

[70]  Michael S. Pratte,et al.  Decoding patterns of human brain activity. , 2012, Annual review of psychology.

[71]  M. Greicius,et al.  Resting-state functional connectivity reflects structural connectivity in the default mode network. , 2009, Cerebral cortex.

[72]  T. A. Kelley,et al.  Cortical mechanisms for shifting and holding visuospatial attention. , 2008, Cerebral cortex.

[73]  J. Driver,et al.  Distinct causal influences of parietal versus frontal brain areas on human visual cortex , 2007 .

[74]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[75]  Robert Oostenveld,et al.  Neural Mechanisms of Visual Attention : How Top-Down Feedback Highlights Relevant Locations , 2007 .

[76]  M. Carrasco Covert attention increases contrast sensitivity: Psychophysical, neurophysiological and neuroimaging studies. , 2006, Progress in brain research.