N-Polar InAlN/AlN/GaN MIS-HEMTs

N-polar metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs) were fabricated from a GaN/AlN/InAlN/GaN heterostructure grown by metalorganic chemical vapor deposition on a vicinal sapphire substrate, using Si<sub>3</sub>N<sub>4</sub> as the gate insulator. Hall measurements in van der Pauw geometry on the heterostructure showed a sheet charge density and a mobility of 2.15 × 10<sup>13</sup> cm<sup>-2</sup> and 1135 cm<sup>2</sup>·V<sup>-1</sup>·s<sup>-1</sup>, respectively. Resistance measurements revealed anisotropic conductivity with respect to the surface steps induced by the substrate misorientation, and the sheet resistance of the 2-D electron gas was as low as 226 Ω/□ in the parallel direction. MIS-HEMTs with a gate length of 0.7 μm and a source-drain spacing of 2.2 μm had a peak drain current of 1.47 A/mm and an on-resistance of 1.45 Ω·mm. At a drain bias of 8 V, the current- and power-gain cutoff frequencies were 14 and 25 GHz, respectively.

[1]  S. Denbaars,et al.  Influence of the substrate misorientation on the properties of N-polar GaN films grown by metal organic chemical vapor deposition , 2007 .

[2]  Umesh K. Mishra,et al.  Recessed Slant Gate AlGaN/GaN High Electron Mobility Transistors with 20.9 W/mm at 10 GHz , 2007 .

[3]  S. Kolluri,et al.  RF Performance of N-Polar AlGaN/GaN MIS-HEMTs Grown by MOCVD on Sapphire Substrate , 2009, IEEE Electron Device Letters.

[4]  James S. Speck,et al.  Properties of N-polar AlGaN/GaN heterostructures and field effect transistors grown by metalorganic chemical vapor deposition , 2008 .

[5]  J. D. del Alamo,et al.  Critical Voltage for Electrical Degradation of GaN High-Electron Mobility Transistors , 2008, IEEE Electron Device Letters.

[6]  James S. Speck,et al.  N-polar GaN∕AlGaN∕GaN high electron mobility transistors , 2007 .

[7]  P. Parikh,et al.  40-W/mm Double Field-plated GaN HEMTs , 2006, 2006 64th Device Research Conference.

[8]  S. Denbaars,et al.  Electrical properties of N-polar AlGaN/GaN high electron mobility transistors grown on SiC by metalorganic chemical vapor deposition , 2009 .

[9]  A. Kurdoghlian,et al.  GaN HFET for W-band Power Applications , 2006, 2006 International Electron Devices Meeting.

[10]  U. Mishra,et al.  High-Performance N-Face GaN Microwave MIS-HEMTs With > 70% Power-Added Efficiency , 2009, IEEE Electron Device Letters.

[11]  S. Keller,et al.  High-power AlGaN/GaN HEMTs for Ka-band applications , 2005, IEEE Electron Device Letters.

[12]  J. Carlin,et al.  High-quality AlInN for high index contrast Bragg mirrors lattice matched to GaN , 2003 .

[13]  U. Mishra,et al.  High power N-face GaN high electron mobility transistors grown by molecular beam epitaxy with optimization of AlN nucleation , 2009 .

[14]  Y. Okamoto,et al.  High-power recessed-gate AlGaN-GaN HFET with a field-modulating plate , 2004, IEEE Transactions on Electron Devices.

[15]  Rongming Chu,et al.  N-Face Metal–Insulator–Semiconductor High-Electron-Mobility Transistors With AlN Back-Barrier , 2008, IEEE Electron Device Letters.

[16]  S. Denbaars,et al.  Growth and characterization of In-polar and N-polar InAlN by metal organic chemical vapor deposition , 2010 .

[17]  Lester F. Eastman,et al.  Two-dimensional electron gases in Ga-face and N-face AlGaN/GaN heterostructures grown by plasma-induced molecular beam epitaxy and metalorganic chemical vapor deposition on sapphire , 2000 .

[18]  E. Alves,et al.  Anomalous ion channeling in AlInN/GaN bilayers: determination of the strain state. , 2006, Physical review letters.

[19]  J. Kuzmik,et al.  Power electronics on InAlN/(In)GaN: Prospect for a record performance , 2001, IEEE Electron Device Letters.