Obstacle Avoidance for Trajectory Tracking Control of Wheeled Mobile Robots

The wheeled mobile robots used in the flexible manufacturing systems act in an environment with static and dynamic obstacles. This paper proposes a new control method for the wheeled mobile robots movement in the presence of static and dynamic obstacles. The dynamic model used for steering and obstacle avoidance is the differential equations system. The environment is the commonly used laser range finder (LRF) system. The obstacle avoidance control is solved using the trajectory tracking control. The sliding mode control approach is used for the trajectory tracking problem. The effectiveness of the proposed local navigational system in an unknown environment with static and moving objects, corresponding to flexible manufacturing system, is proved through simulation results.

[1]  Zvi Shiller,et al.  Optimal obstacle avoidance based on the Hamilton-Jacobi-Bellman equation , 1994, IEEE Trans. Robotics Autom..

[2]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[3]  Weibing Gao,et al.  Variable structure control of nonlinear systems: a new approach , 1993, IEEE Trans. Ind. Electron..

[4]  Wilfrid Perruquetti,et al.  Higher-order sliding mode stabilization for a class of nonholonomic perturbed systems , 2003, Autom..

[5]  Aapo Hyvärinen,et al.  Learning Features by Contrasting Natural Images with Noise , 2009, ICANN.

[6]  Daniela Cernega,et al.  Sliding Mode Control for Trajectory Tracking Problem - Performance Evaluation , 2009, ICANN.

[7]  Anita M. Flynn,et al.  Mobile robots: inspiration to implementation , 1993 .

[8]  Z. Qu,et al.  A new suboptimal control design for cascaded non‐linear systems , 2002 .

[9]  Brett R. Fajen,et al.  Behavioral dynamics of steering, obstacle avoidance, and route selection. , 2003 .

[10]  Vadim I. Utkin,et al.  Sliding mode control in electromechanical systems , 1999 .

[11]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[12]  H. Sussmann,et al.  Limits of highly oscillatory controls and the approximation of general paths by admissible trajectories , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[13]  C. Fernandes,et al.  Near-optimal nonholonomic motion planning for a system of coupled rigid bodies , 1994, IEEE Trans. Autom. Control..

[14]  Anita M. Flynn,et al.  Mobile robots (2nd ed.): inspiration to implementation , 1998 .

[15]  Dongkyoung Chwa,et al.  Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates , 2004, IEEE Transactions on Control Systems Technology.

[16]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[17]  Hiroaki Seki,et al.  Real-Time Obstacle Avoidance Using Potential Field for a Nonholonomic Vehicle , 2010 .

[18]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[19]  Jong-Hwan Kim,et al.  Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots , 1999, IEEE Trans. Robotics Autom..