A finite-step global convergence algorithm for the cumulant-based parameter estimation of multichannel moving average processes

An iterative algorithm for the identification of multichannel moving average (MA) processes driven by mutually independent and identically distributed (i.i.d.) input signals is proposed. It is shown that the algorithm has a finite-step global convergence property. This algorithm is computationally efficient and numerically stable. Two multichannel MA models, including one nonminimum-phase MA model, are estimated by this algorithm with satisfactory performances. It is shown that this algorithm guarantees a solution of third-order cumulant-based identification equations.<<ETX>>

[1]  Benjamin Friedlander,et al.  Asymptotically optimal estimation of MA and ARMA parameters of non-Gaussian processes from high-order moments , 1990 .

[2]  ANANTHRAM SWAMI,et al.  Closed-form recursive estimation of MA coefficients using autocorrelations and third-order cumulants , 1989, IEEE Trans. Acoust. Speech Signal Process..

[3]  H. Akaike Maximum likelihood identification of Gaussian autoregressive moving average models , 1973 .

[4]  Y. Inouye,et al.  Cumulant Based Parameter Estimation Of Linear Systems Of Nonminimum Phase , 1989, Workshop on Higher-Order Spectral Analysis.

[5]  Konstantinos Konstantinides,et al.  Statistical analysis of effective singular values in matrix rank determination , 1988, IEEE Trans. Acoust. Speech Signal Process..

[6]  Ken-Shin Lii,et al.  Identification and estimation of non-Gaussian ARMA processes , 1990, IEEE Trans. Acoust. Speech Signal Process..

[7]  T. W. Anderson Maximum Likelihood Estimation for Vector Autoregressive Moving Average Models , 1978 .

[8]  J. Mendel,et al.  Cumulant based identification of multichannel moving-average models , 1989 .

[9]  Gene H. Golub,et al.  Matrix computations , 1983 .

[10]  Yujiro Inouye,et al.  Cumulant based parameter estimation of multichannel moving-average processes , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[11]  J. Durbin EFFICIENT ESTIMATION OF PARAMETERS IN MOVING-AVERAGE MODELS , 1959 .

[12]  Jitendra K. Tugnait,et al.  Identification of linear stochastic systems via second- and fourth-order cumulant matching , 1987, IEEE Trans. Inf. Theory.

[13]  M.R. Raghuveer,et al.  Bispectrum estimation: A digital signal processing framework , 1987, Proceedings of the IEEE.

[14]  Jerry M. Mendel,et al.  Identification of nonminimum phase systems using higher order statistics , 1989, IEEE Trans. Acoust. Speech Signal Process..

[15]  E. J. Hannan,et al.  Multiple time series , 1970 .