Developments of fuzzy PID controllers

Abstract: This paper describes the development and tuning methods for a novel self-organizing fuzzy proportional integral derivative (PID) controller. Before applying fuzzy logic, the PID gains are tuned using a conventional tuning method. At supervisory level, fuzzy logic readjusts the PID gains online. In the first tuning method, fuzzy logic at the supervisory level readjusts the three PID gains during the system operation. In the second tuning method, fuzzy logic only readjusts the proportional PID gain, and the corresponding integral and derivative gains are readjusted using the Ziegler–Nichols tuning method while the system is in operation. For the compositional rule of inferences in the fuzzy PID and the self-organizing fuzzy PID schemes two new approaches are introduced: the min implication function with the mean of maxima defuzzification method, and the max-product implication function with the centre of gravity defuzzification method. The fuzzy PID controller, the self-organizing fuzzy PID controller and the PID controller are all applied to a non-linear revolute-joint robot arm for step input and path tracking experiments using computer simulation. For the step input and path tracking experiments, the novel self-organizing fuzzy PID controller produces a better output response than the fuzzy PID controller; and in turn both controllers exhibit better process output than the PID controller.

[1]  Hassan B. Kazemian,et al.  The SOF-PID controller for the control of a MIMO robot arm , 2002, IEEE Trans. Fuzzy Syst..

[2]  Guanrong Chen,et al.  Fuzzy predictive PI control for processes with large time delays , 2002, Expert Syst. J. Knowl. Eng..

[3]  A. D. Young Queen Mary College, University of London , 1961 .

[4]  P. Airikka The PID controller: algorithm and implementation , 2003 .

[5]  Ivan Ganchev,et al.  Fuzzy PID control of nonlinear plants , 2002, Proceedings First International IEEE Symposium Intelligent Systems.

[6]  J. Denavit,et al.  A kinematic notation for lower pair mechanisms based on matrices , 1955 .

[7]  E. H. Mamdani,et al.  Advances in the linguistic synthesis of fuzzy controllers , 1976 .

[8]  Witold Pedrycz,et al.  Fuzzy control and fuzzy systems (2nd, extended ed.) , 1993 .

[9]  Ebrahim H. Mamdani,et al.  An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Hum. Comput. Stud..

[10]  George K. I. Mann,et al.  Adaptive hierarchical tuning of fuzzy controllers , 2002, Expert Syst. J. Knowl. Eng..

[11]  Derek P. Atherton,et al.  PID controller tuning , 1999 .

[12]  Hassan B. Kazemian Study of Learning Fuzzy Controllers , 2001, Expert Syst. J. Knowl. Eng..

[13]  Emmanuel G. Collins,et al.  Fuzzy PI control design for an industrial weigh belt feeder , 2003, IEEE Trans. Fuzzy Syst..

[14]  Ebrahim H. Mamdani,et al.  A linguistic self-organizing process controller , 1979, Autom..

[15]  Peter Xiaoping Liu,et al.  An embedded fuzzy controller for a behavior-based mobile robot with guaranteed performance , 2004, IEEE Transactions on Fuzzy Systems.

[16]  Witold Pedrycz,et al.  Fuzzy control and fuzzy systems , 1989 .

[17]  E. H. Mamdani,et al.  Prescriptive method for deriving control policy in a fuzzy-logic controller , 1975 .

[18]  David E. Orin,et al.  Efficient Dynamic Computer Simulation of Robotic Mechanisms , 1982 .

[19]  Bohdan S. Butkiewicz,et al.  About Robustness of Fuzzy Logic PD and PID Controller under Changes of Reasoning Methods , 2002, Advances in Computational Intelligence and Learning.

[20]  M. Malek-Zavarei,et al.  Time-Delay Systems: Analysis, Optimization and Applications , 1987 .

[21]  Rajani K. Mudi,et al.  A robust self-tuning scheme for PI- and PD-type fuzzy controllers , 1999, IEEE Trans. Fuzzy Syst..

[22]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[23]  Onur Karasakal,et al.  Implementation of a New Self-Tuning Fuzzy PID Controller on PLC , 2005 .

[24]  S. Assilian,et al.  Artificial intelligence in control of real dynamic systems , 1974 .

[25]  George K. I. Mann,et al.  Two-level tuning of fuzzy PID controllers , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[26]  Patrick Siarry,et al.  A fuzzy rule base for the improved control of a pressurized water nuclear reactor , 2000, IEEE Trans. Fuzzy Syst..

[27]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[28]  George K. I. Mann,et al.  A systematic study of fuzzy PID controllers-function-based evaluation approach , 2001, IEEE Trans. Fuzzy Syst..

[29]  Reza Langari,et al.  Fuzzy torque distribution control for a parallel hybrid vehicle , 2002, Expert Syst. J. Knowl. Eng..

[30]  Y.F. Li,et al.  Development of fuzzy algorithms for servo systems , 1989, IEEE Control Systems Magazine.

[31]  Kim-Fung Man,et al.  An optimal fuzzy PID controller , 2001, IEEE Trans. Ind. Electron..

[32]  H B Kazemian,et al.  Comparative study of a learning fuzzy PID controller and a self-tuning controller. , 2001, ISA transactions.

[33]  Wei Li,et al.  Design of a hybrid fuzzy logic proportional plus conventional integral-derivative controller , 1998, IEEE Trans. Fuzzy Syst..