TIME-DEPENDENT MODELS OF FLARES FROM SAGITTARIUS A*

The emission from Sgr A*, the supermassive black hole in the Galactic Center, shows order of magnitude variability (“flares”) a few times a day that is particularly prominent in the near-infrared (NIR) and X-rays. We present a time-dependent model for these flares motivated by the hypothesis that dissipation of magnetic energy powers the flares. We show that episodic magnetic reconnection can occur near the last stable circular orbit in time-dependent magnetohydrodynamic simulations of black hole accretion—the timescales and energetics of these events are broadly consistent with the flares from Sgr A*. Motivated by these results, we present a spatially one-zone time-dependent model for the electron distribution function in flares, including energy loss due to synchrotron cooling and adiabatic expansion. Synchrotron emission from transiently accelerated particles can explain the NIR/X-ray light curves and spectra of a luminous flare observed on 2007 April 4. A significant decrease in the magnetic field strength during the flare (coincident with the electron acceleration) is required to explain the simultaneity and symmetry of the simultaneous light curves. Our models predict that the NIR and X-ray spectral indices are related by Δα ≃ 0.5 (where νFν ∝ να) and that there is only modest variation in the spectral index during flares. We also explore implications of this model for longer wavelength (radio-submillimeter) emission seemingly associated with X-ray and NIR flares; we argue that a few hour decrease in the submillimeter emission is a more generic consequence of large-scale magnetic reconnection than delayed radio emission from adiabatic expansion.

[1]  A. Niell,et al.  Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre , 2008, Nature.

[2]  E. Quataert,et al.  Spherical accretion with anisotropic thermal conduction , 2008, 0804.1353.

[3]  Kris Beckwith,et al.  The Influence of Magnetic Field Geometry on the Evolution of Black Hole Accretion Flows: Similar Disks, Drastically Different Jets , 2007, 0709.3833.

[4]  H. Laan,et al.  A Model for Variable Extragalactic Radio Sources , 1966, Nature.

[5]  J. Krolik,et al.  Magnetically Driven Accretion Flows in the Kerr Metric. I. Models and Overall Structure , 2003, astro-ph/0307260.

[6]  Ryoji Matsumoto,et al.  Magnetically Driven Jets from Accretion Disks. III. 2.5-dimensional Nonsteady Simulations for Thick Disk Case , 1998 .

[7]  T. Paumard,et al.  EVIDENCE FOR X-RAY SYNCHROTRON EMISSION FROM SIMULTANEOUS MID-INFRARED TO X-RAY OBSERVATIONS OF A STRONG Sgr A* FLARE , 2009, 0903.3416.

[8]  H. Falcke,et al.  The Intrinsic Size of Sagittarius A* from 0.35 to 6 cm , 2006, astro-ph/0608004.

[9]  P. K. Leung,et al.  RADIATIVE MODELS OF SGR A* FROM GRMHD SIMULATIONS , 2009, 0909.5431.

[10]  K. Mužić,et al.  UvA-DARE ( Digital Academic Repository ) Simultaneous NIR / sub-mm observation of flare emission from Sagittarius A * , 2008 .

[11]  W. Cotton,et al.  Simultaneous Chandra, CSO, and VLA Observations of Sgr A*: The Nature of Flaring Activity , 2007, 0712.2882.

[12]  Ramesh Narayan,et al.  Nonthermal Electrons in Radiatively Inefficient Accretion Flow Models of Sagittarius A* , 2003, astro-ph/0304125.

[13]  J. Pringle,et al.  Hydrodynamical non-radiative accretion flows in two dimensions , 1999, astro-ph/9908185.

[14]  Geoffrey C. Bower,et al.  Interferometric Detection of Linear Polarization from Sagittarius A* at 230 GHz , 2003, astro-ph/0302227.

[15]  Jessica R. Lu,et al.  A Constant Spectral Index for Sagittarius A* during Infrared/X-Ray Intensity Variations , 2007, 0706.1782.

[16]  M. Norman,et al.  ZEUS-2D : a radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. II : The magnetohydrodynamic algorithms and tests , 1992 .

[17]  D. Rouan,et al.  Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre , 2003, Nature.

[18]  C. Fryer,et al.  A Testable Stochastic Acceleration Model for Flares in Sagittarius A* , 2006, astro-ph/0603136.

[19]  A. Eckart,et al.  A 600 Minute Near-Infrared Light Curve of Sagittarius A* , 2008, 0809.2580.

[20]  Caltech,et al.  Rapid X-ray flaring from the direction of the supermassive black hole at the Galactic Centre , 2001, Nature.

[21]  J. Moran,et al.  To appear in the Astrophysical Journal Letters Preprint typeset using L ATEX style emulateapj v. 10/09/06 AN UNAMBIGUOUS DETECTION OF FARADAY ROTATION IN SAGITTARIUS A* , 2006 .

[22]  J. M. Moran,et al.  An X-Ray, Infrared, and Submillimeter Flare of Sagittarius A* , 2007, 0712.2877.

[23]  D. Meier,et al.  GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF THE HARD STATE AS A MAGNETICALLY DOMINATED ACCRETION FLOW , 2008, 0810.1082.

[24]  S. Trippe,et al.  Polarimetry of near-infrared flares from Sagittarius A* , 2006, astro-ph/0610103.

[25]  P. Armitage Turbulence and Angular Momentum Transport in a Global Accretion Disk Simulation , 1998, astro-ph/9805133.

[26]  A. Marscher Accurate formula for the self-Compton X-ray flux density from a uniform, spherical, compact radio source. , 1983 .

[27]  F. Yuan,et al.  ELECTRON HEATING AND ACCELERATION BY MAGNETIC RECONNECTION IN HOT ACCRETION FLOWS , 2009, 0911.4560.

[28]  C. Carilli,et al.  Limits on the Accretion Rates onto Massive Black Holes in Nearby Galaxies , 2000, astro-ph/0005516.

[29]  M. Norman,et al.  ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I - The hydrodynamic algorithms and tests. II - The magnetohydrodynamic algorithms and tests , 1992 .

[30]  H. Bushouse,et al.  SIMULTANEOUS MULTI-WAVELENGTH OBSERVATIONS OF Sgr A* DURING 2007 APRIL 1–11 , 2009, 0907.3786.

[31]  D. Thompson,et al.  The First Measurement of Spectral Lines in a Short-Period Star Bound to the Galaxy’s Central Black Hole: A Paradox of Youth , 2003, astro-ph/0302299.

[32]  Dipankar Maitra,et al.  A time-dependent jet model for the emission from Sagittarius A* , 2009 .

[33]  H. Falcke,et al.  The Nature of the 10 kilosecond X-ray flare in Sgr A* , 2001, astro-ph/0109081.

[34]  G. Blumenthal,et al.  BREMSSTRAHLUNG, SYNCHROTRON RADIATION, AND COMPTON SCATTERING OF HIGH- ENERGY ELECTRONS TRAVERSING DILUTE GASES. , 1970 .

[35]  W. Duschl,et al.  K-band polarimetry of an Sgr A* flare with a clear sub-flare structure , 2006, astro-ph/0610147.

[36]  K. Menten,et al.  A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way , 2002, Nature.

[37]  A. Eckart,et al.  First simultaneous NIR/X-ray detection of a flare from Sgr A , 2004, astro-ph/0403577.

[38]  L. Ho Nuclear Activity in Nearby Galaxies , 2008, 0803.2268.

[39]  G. Bower,et al.  Flaring Activity of Sagittarius A* at 43 and 22 GHz: Evidence for Expanding Hot Plasma , 2006, astro-ph/0603685.

[40]  T. Paumard,et al.  Variations in the Spectral Slope of Sagittarius A* during a Near-Infrared Flare , 2005, astro-ph/0511302.

[41]  J. McKinney General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems , 2006, astro-ph/0603045.

[42]  E. Agol,et al.  MILLIMETER FLARES AND VLBI VISIBILITIES FROM RELATIVISTIC SIMULATIONS OF MAGNETIZED ACCRETION ONTO THE GALACTIC CENTER BLACK HOLE , 2009, 0909.0267.

[43]  C. Fryer,et al.  MHD SIMULATIONS OF ACCRETION ONTO Sgr A*: QUIESCENT FLUCTUATIONS, OUTBURSTS, AND QUASIPERIODICITY , 2006, astro-ph/0611269.

[44]  Ramesh Narayan,et al.  On the Nature of the Variable Infrared Emission from Sagittarius A* , 2004, astro-ph/0401429.

[45]  S. Krucker,et al.  RHESSI Observations of Particle Acceleration and Energy Release in an Intense Solar Gamma-Ray Line Flare , 2003 .

[46]  E. Nakar,et al.  KLEIN–NISHINA EFFECTS ON OPTICALLY THIN SYNCHROTRON AND SYNCHROTRON SELF-COMPTON SPECTRUM , 2009, 0903.2557.

[47]  L. Ho,et al.  A magnetohydrodynamical model for the formation of episodic jets , 2008, 0811.2893.

[48]  R. Harrison Coronal mass ejection , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[49]  J. Hawley,et al.  The Dynamical Structure of Nonradiative Black Hole Accretion Flows , 2002, astro-ph/0203309.

[50]  E. Quataert,et al.  Faraday Rotation in Global Accretion Disk Simulations: Implications for Sgr A* , 2007, 0706.3715.

[51]  Fulvio Melia,et al.  Electron Acceleration around the Supermassive Black Hole at the Galactic Center , 2001, astro-ph/0106162.

[52]  Bonn,et al.  The extreme luminosity states of Sagittarius A , 2010, 1001.1351.

[53]  G. Hammett,et al.  Electron Heating in Hot Accretion Flows , 2007, astro-ph/0703572.

[54]  H. Falcke,et al.  The Simultaneous Spectrum of Sagittarius A* from 20 Centimeters to 1 Millimeter and the Nature of the Millimeter Excess , 1998, astro-ph/9801085.

[55]  J. Hawley,et al.  A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution , 1990 .

[56]  Usa,et al.  A polarized infrared flare from Sagittarius A* and the signatures of orbiting plasma hotspots , 2006, astro-ph/0611737.

[57]  P. Lagage,et al.  Soft gamma-ray constraints on a bright flare from the galactic center supermassive black hole , 2009, 0910.0399.

[58]  R. Narayan,et al.  Three-dimensional MHD Simulations of Radiatively Inefficient Accretion Flows , 2003, astro-ph/0301402.

[59]  UCLA,et al.  Chandra X-Ray Spectroscopic Imaging of Sagittarius A* and the Central Parsec of the Galaxy , 2001, astro-ph/0102151.

[60]  W. Goss,et al.  Variability of Sagittarius A*: Flares at 1 Millimeter , 2003, astro-ph/0302062.

[61]  James M. Stone,et al.  The Effect of Resistivity on the Nonlinear Stage of the Magnetorotational Instability in Accretion Disks , 2000, astro-ph/0001164.