Electrochemical behavior of pitch-based activated carbon fibers for electrochemical capacitors

[1]  Long Zhang,et al.  High energy density Li-ion capacitor assembled with all graphene-based electrodes , 2015 .

[2]  M. Zaini,et al.  Potassium hydroxide activation of activated carbon: a commentary , 2015 .

[3]  Chandrakant D. Lokhande,et al.  Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel , 2015, Scientific Reports.

[4]  K. Kierzek,et al.  Narrow-porous pitch-based carbon fibers of superior capacitance properties in aqueous electrolytes , 2015 .

[5]  Eunji Lee,et al.  Activated carbons prepared from mixtures of coal tar pitch and petroleum pitch and their electrochemical performance as electrode materials for electric double-layer capacitor , 2015 .

[6]  Anastasios I. Dounis,et al.  On battery-less autonomous polygeneration microgrids: Investigation of the combined hybrid capacitors/hydrogen alternative , 2015 .

[7]  R. Menéndez,et al.  Activated carbon fibers prepared directly from stabilized fibers for use as electrodes in supercapacitors , 2014 .

[8]  Y. Uchida,et al.  Synthesis of ordered mesoporous carbon films with a 3D pore structure and the electrochemical performance of electrochemical double layer capacitors , 2014 .

[9]  Jung-A Kim,et al.  A Development of High Power Activated Carbon Using the KOH Activation of Soft Carbon Series Cokes , 2014 .

[10]  Mingming Chen,et al.  Hierarchical porous carbon derived from sulfonated pitch for electrical double layer capacitors , 2014 .

[11]  K. An,et al.  Effects of pore structures on electrochemical behaviors of polyacrylonitrile-based activated carbon nanofibers by carbon dioxide activation , 2014 .

[12]  Yongsheng Chen,et al.  Controlling the effective surface area and pore size distribution of sp2 carbon materials and their impact on the capacitance performance of these materials. , 2013, Journal of the American Chemical Society.

[13]  Itaru Honma,et al.  Nanographene derived from carbon nanofiber and its application to electric double-layer capacitors , 2012 .

[14]  Hossein Iman-Eini,et al.  Stationary super-capacitor energy storage system to save regenerative braking energy in a metro line , 2012 .

[15]  H. C. Foley,et al.  High energy density capacitor using coal tar pitch derived nanoporous carbon/MnO2 electrodes in aqueous electrolytes , 2011 .

[16]  T. S. Bhatti,et al.  A review on electrochemical double-layer capacitors , 2010 .

[17]  S. Mho,et al.  EDLC characteristics with high specific capacitance of the CNT electrodes grown on nanoporous alumina templates , 2006 .

[18]  Young Hee Lee,et al.  Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes , 2001 .

[19]  T. Kyotani,et al.  A new quantitative approach for microstructural analysis of coal char using HRTEM images , 1999 .

[20]  B. Conway Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage , 1991 .

[21]  I. Tanahashi,et al.  Effect of concentration of surface acidic functional groups on electric double-layer properties of activated carbon fibers , 1990 .

[22]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[23]  K. Beccu,et al.  Abschätzung der porenstruktur poröser elektroden aus impedanzmessungen , 1976 .

[24]  E. Barrett,et al.  (CONTRIBUTION FROM THE MULTIPLE FELLOWSHIP OF BAUGH AND SONS COMPANY, MELLOX INSTITUTE) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms , 1951 .

[25]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .