Broad Spectrum Light Harvesting in TiO$_2$ Nanotube Array – Hemicyanine Dye – P3HT Hybrid Solid-State Solar Cells

Control of interfacial electron transfer between electron transporting oxide semiconductors and molecular adsorbates in organic-inorganic hybrid solar cells is a research area of intense interest, with the poor optical harvesting in the red and near-IR (NIR) portion of the solar spectrum a significant limitation to device performance. We fabricate hybrid solar cells, using two new hemicyanine photosensitizers having different π-conjugation lengths that absorb sunlight from visible to NIR range, as well as unsymmetrical squaraine dye. These organic dyes are used not only as a photosensitizer, but also as electronic mediator for n-type TiO2 nanotube arrays, vertically oriented from the fluorine-doped tin oxide coated glass substrate, which are subsequently infiltrated with p-type regio-regular poly(3-hexyl thiophene 2,5 diyl), enabling broad-spectrum response. In general, the organic-dye-inorganic photovoltaic structure appears a promising method for harvesting a broad portion of the solar spectrum energy from a relatively simple photovoltaic device.

[1]  Craig A Grimes,et al.  Visible to near-infrared light harvesting in TiO2 nanotube array-P3HT based heterojunction solar cells. , 2009, Nano letters.

[2]  Craig A Grimes,et al.  Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. , 2009, Nature nanotechnology.

[3]  Craig A. Grimes,et al.  TiO2 Nanotube Arrays: Synthesis, Properties, and Applications , 2009 .

[4]  Ke-Jian Jiang,et al.  Photovoltaics Based on Hybridization of Effective Dye‐Sensitized Titanium Oxide and Hole‐Conductive Polymer P3HT , 2009 .

[5]  Molecular Designs and Syntheses of Organic Dyes for Dye-Sensitized Solar Cells , 2009 .

[6]  Gang Li,et al.  Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. , 2009, Journal of the American Chemical Society.

[7]  Craig A. Grimes,et al.  Recent Advances in the Use of TiO2 Nanotube and Nanowire Arrays for Oxidative Photoelectrochemistry , 2009 .

[8]  Bin Liu,et al.  Highly Efficient Nanoporous TiO2‐Polythiophene Hybrid Solar Cells Based on Interfacial Modification Using a Metal‐Free Organic Dye , 2009 .

[9]  Craig A. Grimes,et al.  TiO2 Nanotube Arrays , 2009 .

[10]  Nageh K. Allam,et al.  Photoelectrochemical and water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytes , 2008 .

[11]  Craig A. Grimes,et al.  Appropriate strategies for determining the photoconversion efficiency of water photoelectrolysis cells : A review with examples using titania nanotube array photoanodes , 2008 .

[12]  Mingqing Wang,et al.  P3HT/TiO2 bulk-heterojunction solar cell sensitized by a perylene derivative , 2007 .

[13]  J. Fréchet,et al.  Long‐Range Resonant Energy Transfer for Enhanced Exciton Harvesting for Organic Solar Cells , 2007 .

[14]  Craig A. Grimes,et al.  TiO2 Nanotube Arrays of 1000 μm Length by Anodization of Titanium Foil: Phenol Red Diffusion , 2007 .

[15]  Jenny Nelson,et al.  Hybrid polymer-metal oxide thin films for photovoltaic applications{ , 2007 .

[16]  Thomas Geiger,et al.  Efficient far red sensitization of nanocrystalline TiO2 films by an unsymmetrical squaraine dye. , 2007, Journal of the American Chemical Society.

[17]  Michael D. McGehee,et al.  Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells , 2007 .

[18]  H. Ohkita,et al.  Improvement of charge injection efficiency in organic-inorganic hybrid solar cells by chemical modification of metal oxides with organic molecules , 2007 .

[19]  Craig A. Grimes,et al.  A new benchmark for TiO2 nanotube array growth by anodization , 2007 .

[20]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[21]  Craig A. Grimes,et al.  Application of finite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption , 2007 .

[22]  Craig A. Grimes,et al.  Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells , 2007 .

[23]  Kai Zhu,et al.  Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. , 2007, Nano letters.

[24]  Jae Kwan Lee,et al.  Molecular engineering of organic sensitizers for solar cell applications. , 2006, Journal of the American Chemical Society.

[25]  J. Durrant,et al.  Parameters Influencing Charge Separation in Solid‐State Dye‐Sensitized Solar Cells Using Novel Hole Conductors , 2006 .

[26]  A. Heeger,et al.  Molecular structure and dynamics at the interfaces within bulk heterojunction materials for solar cells. , 2006, Journal of the American Chemical Society.

[27]  Jenny Nelson,et al.  Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer. , 2006, The journal of physical chemistry. B.

[28]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[29]  T. Yamaguchi,et al.  Porphyrin dye-sensitization of polythiophene in a conjugated polymer/TiO2 p–n hetero-junction solar cell , 2005 .

[30]  Craig A. Grimes,et al.  Transparent Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin Films , 2005 .

[31]  N. S. Sariciftci,et al.  Characterization of N, N′-bis-2-(1-hydoxy-4-methylpentyl)-3, 4, 9, 10-perylene bis (dicarboximide) sensitized nanocrystalline TiO2 solar cells with polythiophene hole conductors , 2005 .

[32]  Donal D. C. Bradley,et al.  The Effect of Polymer Optoelectronic Properties on the Performance of Multilayer Hybrid Polymer/TiO2 Solar Cells , 2005 .

[33]  Hironori Arakawa,et al.  Novel Conjugated Organic Dyes for Efficient Dye‐Sensitized Solar Cells , 2005 .

[34]  Craig A. Grimes,et al.  The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation , 2005 .

[35]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .

[36]  Hironori Arakawa,et al.  Effect of additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[37]  Craig A. Grimes,et al.  A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination , 2004 .

[38]  Donal D. C. Bradley,et al.  Hybrid nanocrystalline TiO2 solar cells with a fluorene–thiophene copolymer as a sensitizer and hole conductor , 2004 .

[39]  Craig A. Grimes,et al.  A Self-Cleaning, Room-Temperature Titania-Nanotube Hydrogen Gas Sensor , 2003 .

[40]  Yunzhi Liu,et al.  Infiltrating Semiconducting Polymers into Self‐Assembled Mesoporous Titania Films for Photovoltaic Applications , 2003 .

[41]  Lenneke H. Slooff,et al.  Photoinduced Electron Transfer and Photovoltaic Response of a MDMO‐PPV:TiO2 Bulk‐Heterojunction , 2003 .

[42]  Craig A. Grimes,et al.  Crystallization and high-temperature structural stability of titanium oxide nanotube arrays , 2003 .

[43]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[44]  Craig A. Grimes,et al.  Titanium oxide nanotube arrays prepared by anodic oxidation , 2001 .

[45]  S. Carter,et al.  Charge transport inTiO2/MEH−PPVpolymer photovoltaics , 2001 .

[46]  Phillip J. Brock,et al.  Charge transport in TiO2/MEH-PPV polymer photovoltaics , 2001 .

[47]  Martin A. Green,et al.  Photovoltaics: technology overview , 2000 .

[48]  Hans-Heinrich Hörhold,et al.  Efficient Titanium Oxide/Conjugated Polymer Photovoltaics for Solar Energy Conversion , 2000 .

[49]  J. Moser,et al.  Merocyanine Aggregation in Mesoporous Networks , 1996 .