Boundedness character of positive solutions of a higher order difference equation
暂无分享,去创建一个
[1] H. M. El-Owaidy,et al. On the recursive sequences xn+1=-αxn-1/β±xn , 2003, Appl. Math. Comput..
[2] Stevo Stevic. On the difference equation xn+1=alpha + xn-1/xn , 2008, Comput. Math. Appl..
[3] Stevo Stević. On the recursive sequence , 2004 .
[4] Kenneth S. Berenhaut,et al. THE GLOBAL ATTRACTIVITY OF THE RATIONAL DIFFERENCE EQUATION yn = A+ (yn-k/yn-m)p , 2007 .
[5] T. Sun,et al. On boundedness of the solutions of the difference equation xn , 2006 .
[6] Stevo Stevic,et al. On a difference equation with min-max response , 2004, Int. J. Math. Math. Sci..
[7] K. Berenhaut,et al. A note on the difference equation , 2005 .
[8] Stevo Stević,et al. On the recursive sequence $$x_{n + 1} = \alpha + \frac{{x_{n - 1}^p }}{{x_n^p }}$$ , 2005 .
[9] Stevo Stević,et al. Boundedness character of a class of difference equations , 2009 .
[10] S. Stević,et al. On the Recursive Sequence x n+1 = α + (βx n−1)/(1 + g(xn )) , 2003 .
[11] E. Camouzis,et al. On the boundedness character of rational equations, part 3 , 2007 .
[12] J. D. Foley,et al. Quantitative Bounds for the Recursive Sequence y n + 1 = A + , 2005 .
[13] Kenneth S. Berenhaut,et al. A note on positive non-oscillatory solutions of the difference equation , 2006 .
[14] E. Camouzis,et al. On the boundedness character of rational equations, part 2 , 2006 .
[15] Lothar Berg,et al. Inclusion Theorems for Non-linear Difference Equations with Applications , 2004 .
[16] R. Levins,et al. On the difference equation xn+1=α+βxn−1e−xn , 2001 .
[17] K. Berenhaut,et al. The difference equation xn + 1 = α + xn − k ∑ k − 1 i = 0 cixn − i has solutions converging to zero , 2006 .
[18] G. Ladas,et al. ON THE RECURSIVE SEQUENCE XN+1 = A/XN+ 1/XN-2 , 1998 .
[19] S. Ozen,et al. On the difference equation , 2006 .
[20] Kenneth S. Berenhaut,et al. The behaviour of the positive solutions of the difference equation , 2006 .
[21] C. Kent,et al. On the Recursive Sequence x n+1= , 2003 .
[22] Stevo Stević,et al. On the Behaviour of the Solutions of a Second-Order Difference Equation , 2007 .
[23] Stevo Stevic,et al. Quantitative bounds for the recursive sequence yn = A + yn / (yn-k) , 2006, Appl. Math. Lett..
[24] Alaa E. Hamza,et al. On the recursive sequence x n+1 =.... , 2008 .
[25] Kenneth S. Berenhaut,et al. The global attractivity of the rational difference equation _{}=1+\frac{_{-}}_{-} , 2007 .
[26] Kenneth S. Berenhaut,et al. The global attractivity of the rational difference equation $y_n=A+\left(\frac{y_{n-k}}{y_{n-m}}\right)^p$ , 2008 .
[27] Alaa E. Hamza,et al. On the recursive sequence xn+1=α+xn−1xn , 2006 .
[28] Weifeng Su,et al. On the Recursive Sequence , 2004 .
[29] Stevo Stevic,et al. The global attractivity of the rational difference equation yn = (yn-k + yn-m) / (1 + yn-k yn-m) , 2007, Appl. Math. Lett..
[30] A. M. Ahmed,et al. On asymptotic behaviour of the difference equation $$X_{N + 1} = \alpha + \frac{{X_{N - 1} ^P }}{{X_N ^P }}$$ , 2003 .
[31] G. Ladas,et al. On the Recursive Sequencexn + 1 = α + xn − 1/xn☆ , 1999 .
[32] G. Karakostas,et al. ON THE RECURSIVE SEQUENCE x_n+1 = α + x_n-k / f(x_n, …, x_n-k_1) , 2005 .
[33] Stevo Stevi´c,et al. ON THE RECURSIVE SEQUENCE $x_{n+1}=\displaystyle\frac{A}{\prod^k_{i=0}x_{n-i}}+\displaystyle\frac{1}{\prod^{2(k+1)}_{j=k+2}x_{n-j}}$ , 2003 .
[34] B. Iričanin. Dynamics of a Class of Higher Order Difference Equations , 2007 .
[35] S. Stevo. Boundedness character of two classes of third-order difference equations(1 , 2009 .
[36] Bratislav Iričanin,et al. A Global Convergence Result for a Higher Order Difference Equation , 2007 .
[37] Lothar Berg,et al. On the Asymptotics of Nonlinear Difference Equations , 2002 .
[38] A. M. Ahmed,et al. On asymptotic behaviour of the difference equation X N+1 = α + X N-1 P /X N P , 2003 .
[39] J. Feuer. On the Behavior of Solutions of x n+1 = p+(x n−1/xn ) , 2004 .
[40] Kenneth S. Berenhaut,et al. The difference equation xn+1=α+xn−k∑i=0k−1cixn−i has solutions converging to zero , 2007 .
[41] Stevo Stević. ON THE RECURSIVE SEQUENCE $x_{n+1} = \dfrac{\alpha + \beta x_{n-k}}{f(x_n,...,x_{n-k+1})}$ , 2005 .
[42] JOHN D. FOLEY,et al. THE GLOBAL ATTRACTIVITY OF THE RATIONAL DIFFERENCE , 2005 .
[43] W. Leighton,et al. On the Behaviour of Solutions of , 1979 .
[44] H. M. El-Owaidy,et al. On asymptotic behaviour of the difference equation xn+1=α+(xn-k/xn) , 2004, Appl. Math. Comput..
[45] Kenneth S. Berenhaut,et al. On the rational recursive sequence yn = A + yn-1/yn-m for small A , 2008, Appl. Math. Lett..
[46] Stevo Stević,et al. Short Note: A Note on Periodic Character of a Difference Equation , 2004 .
[47] Alaa E. Hamza,et al. On the recursive sequence xn+1= , 2008, Comput. Math. Appl..