Strong edge colorings of graphs and the covers of Kneser graphs

A proper edge coloring of a graph is strong if it creates no bichromatic path of length three. It is well known that for a strong edge coloring of a k-regular graph at least 2k−1 colors are needed. We show that a k-regular graph admits a strong edge coloring with 2k−1 colors if and only if it covers the Kneser graphK(2k−1, k−1). In particular, a cubic graph is strongly 5-edge-colorable whenever it covers the Petersen graph. One of the implications of this result is that a conjecture about strong edge colorings of subcubic graphs proposed by Faudree et al. [Ars Combin. 29 B (1990), 205–211] is false.

[1]  M. Šoviera A contribution to the theory of voltage graphs , 1986 .

[2]  Wensong Lin,et al.  The strong chromatic index of a class of graphs , 2008, Discret. Math..

[3]  Lars D@vling Andersen The strong chromatic index of a cubic graph is at most 10 , 1992, Discret. Math..

[4]  Hervé Hocquard,et al.  Between Proper and Strong Edge-Colorings of Subcubic Graphs , 2020, IWOCA.

[5]  Alexandr V. Kostochka,et al.  Strong chromatic index of subcubic planar multigraphs , 2015, Eur. J. Comb..

[6]  Maksim Maydanskiy The incidence coloring conjecture for graphs of maximum degree 3 , 2005, Discret. Math..

[7]  Michał Dębski,et al.  Strong chromatic index of graphs , 2015 .

[8]  Paul Erdös,et al.  Problems and results in combinatorial analysis and graph theory , 1988, Discret. Math..

[9]  Stephen G. Hartke,et al.  On the Strong Chromatic Index of Sparse Graphs , 2015, Electron. J. Comb..

[10]  Jonathan L. Gross,et al.  Topological Graph Theory , 1987, Handbook of Graph Theory.

[11]  Angelika Steger,et al.  On induced matchings , 1993, Discret. Math..

[12]  Ross J. Kang,et al.  An improved procedure for colouring graphs of bounded local density , 2021, SODA.

[13]  Geoffrey Exoo,et al.  On the girth of voltage graph lifts , 2011, Eur. J. Comb..

[14]  William T. Trotter,et al.  Induced matchings in cubic graphs , 1993, J. Graph Theory.

[15]  Oleg V. Borodin,et al.  Precise Upper Bound for the Strong Edge Chromatic Number of Sparse Planar Graphs , 2013, Discuss. Math. Graph Theory.

[16]  N. Biggs SOME ODD GRAPH THEORY , 1979 .