Collocation, dissipation and [overshoot] for time integration schemes in structural dynamics

[1]  John C. Houbolt,et al.  A Recurrence Matrix Solution for the Dynamic Response of Elastic Aircraft , 1950 .

[2]  G. Dahlquist A special stability problem for linear multistep methods , 1963 .

[3]  Edward L. Wilson,et al.  A COMPUTER PROGRAM FOR THE DYNAMIC STRESS ANALYSIS OF UNDERGROUND STRUCTURES , 1968 .

[4]  K. Bathe,et al.  Stability and accuracy analysis of direct integration methods , 1972 .

[5]  R. D. Krieg Unconditional Stability in Numerical Time Integration Methods , 1973 .

[6]  J. H. Argyris,et al.  Dynamic Response by Large Step Integration , 1973 .

[7]  G. L. Goudreau,et al.  Evaluation of numerical integration methods in elastodynamics , 1973 .

[8]  John Argyris,et al.  Non-linear oscillations using the finite element technique , 1973 .

[9]  Samuel W. Key,et al.  Transient shell response by numerical time integration , 1973 .

[10]  Ted Belytschko,et al.  On the Unconditional Stability of an Implicit Algorithm for Nonlinear Structural Dynamics , 1975 .

[11]  O. C. Zienkiewicz,et al.  Finite element methods for second order differential equations with significant first derivatives , 1976 .

[12]  Thomas J. R. Hughes,et al.  Stability, convergence and growth and decay of energy of the average acceleration method in nonlinear structural dynamics , 1976 .

[13]  Thomas J. R. Hughes,et al.  A note on the stability of Newmark's algorithm in nonlinear structural dynamics , 1977 .

[14]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .