On the quasi-optimal rules for the choice of the regularization parameter in case of a noisy operator

A usual way to characterize the quality of different a posteriori parameter choices is to prove their order-optimality on the different sets of solutions. In paper by Raus and Hämarik (J Inverse Ill-Posed Probl 15(4):419–439, 2007) we introduced the property of the quasi-optimality to characterize the quality of the rule of the a posteriori choice of the regularization parameter for concrete problem Au = f in case of exact operator and discussed the quasi-optimality of different well-known rules for the a posteriori parameter choice as the discrepancy principle, the modification of the discrepancy principle, balancing principle and monotone error rule. In this paper we generalize the concept of the quasi-optimality for the case of a noisy operator and concretize results for the mentioned parameter choice rules.

[1]  Sergei V. Pereverzev,et al.  On the generalized discrepancy principle for Tikhonov regularization in Hilbert scales , 2010 .

[2]  A. V. Goncharskii,et al.  A generalized discrepancy principle , 1973 .

[3]  Toomas Raus,et al.  New rule for choice of the regularization parameter in (iterated) tikhonov method , 2009 .

[4]  V. Morozov On the solution of functional equations by the method of regularization , 1966 .

[5]  F. Bauer,et al.  The quasi-optimality criterion for classical inverse problems , 2008 .

[6]  Uno Hämarik,et al.  The use of monotonicity for choosing the regularization parameter in ill-posed problems , 1999 .

[7]  Toomas Raus,et al.  On numerical realization of quasioptimal parameter choices in (iterated) Tikhonov and Lavrentiev regularization , 2009 .

[8]  Toomas Raus,et al.  About the Balancing Principle for Choice of the Regularization Parameter , 2009 .

[9]  P. Mathé The Lepskii principle revisited , 2006 .

[10]  P. Mathé,et al.  Geometry of linear ill-posed problems in variable Hilbert scales Inverse Problems 19 789-803 , 2003 .

[11]  H. Gfrerer An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates , 1987 .

[12]  U. Hämarik,et al.  On the quasioptimal regularization parameter choices for solving ill-posed problems , 2007 .

[13]  Toomas Raus,et al.  Use of extrapolation in regularization methods , 2007 .

[14]  Uno Hämarik,et al.  On the Monotone Error Rule for Parameter Choice in Iterative and Continuous Regularization Methods , 2001 .

[15]  T. Hohage,et al.  A Lepskij-type stopping rule for regularized Newton methods , 2005 .