Integrated System Identification and Optimization

Publisher Summary The modern systems approach in handling large scale problems includes the concepts of system identification and optimization. The coupling relationship between these concepts is inherent in the nature of the desired “optimal solution.” Any mathematical model consists of unknown variables and “known” parameters characterizing the system. These parameters are not known, but are estimated or determined under non-optimal conditions. The solution that is generated from such system models might be non-optimal. The identification of the system's parameters, referred to as system modeling, is essential to obtain an optimal control policy. This chapter discusses the coupling relationship between these concepts and describes the analytical tools and methods for tackling the joint problem. Mathematical models, which aim at representing real physical systems in quantitative form, have become important tools in the design, synthesis, analysis, operation, and control of complex systems.

[1]  Andrew P. Sage,et al.  Comparison of some methods used for process identification , 1968, Autom..

[2]  Leon S. Lasdon,et al.  Feasible optimization methods for interconnected systems , 1965 .

[3]  Yacov Y. Haimes,et al.  Modeling and Control of the Pollution of Water Resources Systems via Multilevel Approach , 1971 .

[4]  Yacov Y. Haimes,et al.  A computational approach to the combined problem of optimization and parameter identification , 1972 .

[5]  M. Mesarovic,et al.  Theory of Hierarchical, Multilevel, Systems , 1970 .

[6]  E. J. Bauman,et al.  Multilevel Optimization Techniques with Application to Trajectory Decomposition , 1968 .

[7]  D. Teichroew,et al.  Optimal control of dynamic operations research models , 1969 .

[8]  Donald Albert Calahan,et al.  Computer Aided Network Design , 1972 .

[9]  M. D. Mesarovic,et al.  A multilevel structure for a class of linear dynamic optimization problems , 1965 .

[10]  Karl Johan Åström,et al.  BOOK REVIEW SYSTEM IDENTIFICATION , 1994, Econometric Theory.

[11]  Arthur M. Geoffrion,et al.  Elements of large-scale mathematical programming , 1969 .

[12]  Arthur M. Geoffrion,et al.  Solving Bicriterion Mathematical Programs , 1967, Oper. Res..

[13]  Arthur M. Geoffrion,et al.  Elements of Large-Scale Mathematical Programming Part I: Concepts , 1970 .

[14]  John Hugh Westcott,et al.  Numerical computational methods of optimisation in control , 1969, Autom..

[15]  R. Bellman,et al.  On structural identifiability , 1970 .

[16]  Samuel Karlin,et al.  Mathematical Methods and Theory in Games, Programming, and Economics , 1961 .

[17]  Yacov Y. Haimes,et al.  Computational Results for Water Pollution Taxation Using Multilevel Approach , 1972 .

[18]  Yacov Y. Haimes,et al.  Parametric solution to the joint system identification and optimization problem , 1974 .

[19]  Michael D. Intriligator,et al.  Mathematical optimization and economic theory , 1971 .

[20]  Yacov Y. Haimes Decomposition and multilevel techniques for water quality control , 1972 .

[21]  Leon S. Lasdon,et al.  Duality and Decomposition in Mathematical Programming , 1968, IEEE Trans. Syst. Sci. Cybern..

[22]  Harvey J. Everett Generalized Lagrange Multiplier Method for Solving Problems of Optimum Allocation of Resources , 1963 .

[23]  Jil Westcott Méthodes de calcul numérique d'optimalisation en automatiqueNumerishe rechenmethoden für die optimierung von regelungenЦифpoвыe мeтoды выхиcлeния для oптимизaции в aвтoмaтикe , 1969 .

[24]  Leon S. Lasdon,et al.  Optimization Theory of Large Systems , 1970 .

[25]  D. A. Wismer,et al.  Optimal control of distributed parameter systems using multilevel techniques , 1966 .

[26]  R. C. Durbeck,et al.  Control model simplification using a two-level decomposition technique , 1965 .

[27]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[28]  L. Lasdon,et al.  A multi-level technique for optimization , 1965 .

[29]  Roger Fletcher,et al.  A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..

[30]  R. Bellman,et al.  Quasilinearization and nonlinear boundary-value problems , 1966 .

[31]  David Mautner Himmelblau,et al.  Decomposition of large-scale problems , 1973 .

[32]  Yacov Y. Haimes,et al.  Integrated system modeling and optimization via quasilinearization , 1971 .

[33]  Yacov Y. Haimes,et al.  A multilevel approach to determining optimal taxation for the abatement of water pollution , 1972 .