Second-Order and Dependently-Sorted Abstract Syntax

The paper develops a mathematical theory in the spirit of categorical algebra that provides a model theory for second-order and dependently-sorted syntax. The theory embodies notions such as alpha-equivalence, variable binding, capture-avoiding simultaneous substitution, term metavariable, meta-substitution, mono and multi sorting, and sort dependency. As a matter of illustration, a model is used to extract a second-order syntactic theory, which is thus guaranteed to be correct by construction.

[1]  First Order Logic with Dependent Sorts, with Applications to Category Theory , 1995 .

[2]  Andrew M. Pitts,et al.  A New Approach to Abstract Syntax with Variable Binding , 2002, Formal Aspects of Computing.

[3]  M. Fiore a Mathematical Theory of Substitution , 2007 .

[4]  John Power,et al.  A unified category-theoretic formulation of typed binding signatures , 2005, MERLIN '05.

[5]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[6]  Jan Willem Klop,et al.  Combinatory reduction systems , 1980 .

[7]  Chung-Kil Hur,et al.  Equational Systems and Free Constructions (Extended Abstract) , 2007, ICALP.

[8]  Chung-Kil Hur,et al.  Term Equational Systems and Logics: (Extended Abstract) , 2008, MFPS.

[9]  Makoto Hamana Free S-Monoids: A Higher-Order Syntax with Metavariables , 2004, APLAS.

[10]  M. Barr,et al.  Complexity doctrines , 1995 .

[11]  John Cartmell,et al.  Generalised algebraic theories and contextual categories , 1986, Ann. Pure Appl. Log..

[12]  Antonino Salibra,et al.  The abstract variable-binding calculus , 1995, Stud Logica.

[13]  More on graphic toposes , 1991 .

[14]  Paul Taylor,et al.  Practical Foundations of Mathematics , 1999, Cambridge studies in advanced mathematics.

[15]  Donald S. Lee THE STRUCTURE OF SUBSTITUTION , 1980 .

[16]  A. Kock Strong functors and monoidal monads , 1972 .

[17]  Marino Miculan,et al.  A framework for typed HOAS and semantics , 2003, PPDP '03.

[18]  Gordon D. Plotkin,et al.  Abstract syntax and variable binding , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[19]  Andrew M. Pitts Alpha-Structural Recursion and Induction , 2005, TPHOLs.

[20]  M Makkai First Order Logic with Dependent Sorts, with Applications to Category Theory , .

[21]  Michael Barr,et al.  Category theory for computing science , 1995, Prentice Hall International Series in Computer Science.

[22]  Marcelo P. Fiore,et al.  Mathematical Models of Computational and Combinatorial Structures , 2005, FoSSaCS.

[23]  G. M. Kelly,et al.  A note on actions of a monoidal category. , 2001 .

[24]  Andrew M. Pitts,et al.  Nominal Equational Logic , 2007, Electron. Notes Theor. Comput. Sci..

[25]  Daniel Lehmann,et al.  Algebraic specification of data types: A synthetic approach , 1981, Mathematical systems theory.

[26]  Chung-Kil Hur,et al.  Equational systems and free constructions , 2007 .

[27]  Marcelo P. Fiore,et al.  Semantic analysis of normalisation by evaluation for typed lambda calculus , 2002, PPDP '02.