Anode catalyst layer with hierarchical pore size distribution for highly efficient proton exchange membrane water electrolysis

[1]  Khalid Fatih,et al.  Correlating Nanostructure Features to Transport Properties of Polymer Electrolyte Membrane Electrolyzer Anode Catalyst Layers , 2023, SSRN Electronic Journal.

[2]  Feng Zhang,et al.  Overall Design of Anode with Gradient Ordered Structure with Low Iridium Loading for Proton Exchange Membrane Water Electrolysis. , 2022, Nano letters.

[3]  B. Xia,et al.  Key Components and Design Strategy for a Proton Exchange Membrane Water Electrolyzer , 2022, Small Structures.

[4]  Hao Wang,et al.  Exploring and understanding the internal voltage losses through catalyst layers in proton exchange membrane water electrolysis devices , 2022, Applied Energy.

[5]  J. Nelson Weker,et al.  Multi-Scale Multi-Technique Characterization Approach for Analysis of PEM Electrolyzer Catalyst Layer Degradation , 2022, Journal of The Electrochemical Society.

[6]  Sang Moon Kim,et al.  Investigation of the correlation effects of catalyst loading and ionomer content in an anode electrode on the performance of polymer electrode membrane water electrolysis , 2022, International Journal of Hydrogen Energy.

[7]  S. Reichelstein,et al.  Reversible Power-to-Gas systems for energy conversion and storage , 2022, Nature communications.

[8]  Linfa Peng,et al.  Design and optimization of gradient wettability pore structure of adaptive PEM fuel cell cathode catalyst layer , 2022, Applied Energy.

[9]  Jinkyu Lim,et al.  Amorphous Ir atomic clusters anchored on crystalline IrO2 nanoneedles for proton exchange membrane water oxidation , 2022, Journal of Power Sources.

[10]  K. Ayers,et al.  Tuning Catalyst Activation and Utilization Via Controlled Electrode Patterning for Low-Loading and High-Efficiency Water Electrolyzers. , 2022, Small.

[11]  Lun Pan,et al.  Advances in Oxygen Evolution Electrocatalysts for Proton Exchange Membrane Water Electrolyzers , 2022, Advanced Energy Materials.

[12]  S. Shimpalee,et al.  Elucidating Effects of Catalyst Loadings and Porous Transport Layer Morphologies on Operation of Proton Exchange Membrane Water Electrolyzers , 2022, Applied Catalysis B: Environmental.

[13]  B. Pivovar,et al.  Discovering and Demonstrating a Novel High-Performing 2D-Patterned Electrode for Proton-Exchange Membrane Water Electrolysis Devices. , 2022, ACS applied materials & interfaces.

[14]  S. Thiele,et al.  Essentials of High Performance Water Electrolyzers – From Catalyst Layer Materials to Electrode Engineering , 2021, Advanced Energy Materials.

[15]  H. Lv,et al.  Defects tailoring IrO2@TiN1+x nano-heterojunction for superior water oxidation activity and stability , 2021, Materials Chemistry Frontiers.

[16]  D. Brett,et al.  Engineering Catalyst Layers for Next‐Generation Polymer Electrolyte Fuel Cells: A Review of Design, Materials, and Methods , 2021 .

[17]  K. Friedrich,et al.  Porous Transport Layers for Proton Exchange Membrane Electrolysis Under Extreme Conditions of Current Density, Temperature, and Pressure , 2021, Advanced Energy Materials.

[18]  F. Jiang,et al.  Effect of catalyst layer mesoscopic pore-morphology on cold start process of PEM fuel cells , 2021, Frontiers in Energy.

[19]  M. Secanell,et al.  Using Pore Former to Improve Performance of Anode Catalyst Layer of a PEM Water Electrolyzer , 2020 .

[20]  M. Secanell,et al.  Measurement of the Protonic and Electronic Conductivities of PEM Water Electrolyzer Electrodes. , 2020, ACS applied materials & interfaces.

[21]  P. Strasser,et al.  Efficient and Stable Low Iridium Loaded Anodes for PEM Water Electrolysis Made Possible by Nanofiber Interlayers , 2020, ACS Applied Energy Materials.

[22]  Taro Kimura,et al.  Towards a generic understanding of oxygen evolution reaction kinetics in polymer electrolyte water electrolysis , 2020, Energy & Environmental Science.

[23]  F. Berkel,et al.  Novel components in Proton Exchange Membrane (PEM) Water Electrolyzers (PEMWE): Status, challenges and future needs. A mini review , 2020 .

[24]  H. Gasteiger,et al.  Current Challenges in Catalyst Development for PEM Water Electrolyzers , 2020, Chemie Ingenieur Technik.

[25]  W. Tao,et al.  Pore-scale study of effects of macroscopic pores and their distributions on reactive transport in hierarchical porous media , 2018, Chemical Engineering Journal.

[26]  Xianguo Li,et al.  Effect of Pt loading and catalyst type on the pore structure of porous electrodes in polymer electrolyte membrane (PEM) fuel cells , 2018 .

[27]  Gurwinder Singh,et al.  Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications. , 2018, Chemical Society reviews.

[28]  R. Zengerle,et al.  Tailoring the Membrane‐Electrode Interface in PEM Fuel Cells: A Review and Perspective on Novel Engineering Approaches , 2018 .

[29]  D. Wilkinson,et al.  The Stability Challenges of Oxygen Evolving Catalysts: Towards a Common Fundamental Understanding and Mitigation of Catalyst Degradation. , 2017, Angewandte Chemie.

[30]  H. Gasteiger,et al.  Analysis of Voltage Losses in PEM Water Electrolyzers with Low Platinum Group Metal Loadings , 2017 .

[31]  P. Kumta,et al.  Fluorine substituted (Mn,Ir)O2:F high performance solid solution oxygen evolution reaction electro-catalysts for PEM water electrolysis , 2017 .

[32]  Hubert A. Gasteiger,et al.  Influence of Ionomer Content in IrO 2 /TiO 2 Electrodes on PEM Water Electrolyser Performance , 2016 .

[33]  N. Guillet,et al.  Influence of iridium oxide loadings on the performance of PEM water electrolysis cells: Part I–Pure IrO2-based anodes , 2016 .

[34]  Felix N. Büchi,et al.  Investigation of Mass Transport Losses in Polymer Electrolyte Electrolysis Cells , 2015 .

[35]  D. Stolten,et al.  A comprehensive review on PEM water electrolysis , 2013 .

[36]  K. Scott,et al.  The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance , 2010 .

[37]  Jon G. Pharoah,et al.  Nature-Inspired Energy- and Material-Efficient Design of a Polymer Electrolyte Membrane Fuel Cell , 2010 .

[38]  Kourosh Malek,et al.  On the micro-, meso-, and macroporous structures of polymer electrolyte membrane fuel cell catalyst layers. , 2010, ACS applied materials & interfaces.

[39]  M. Secanell,et al.  Improved polymer electrolyte membrane water electrolyzer performance by using carbon black as a pore former in the anode catalyst layer , 2022, Journal of Power Sources.

[40]  R. Hanke-Rauschenbach,et al.  Elucidating the Effect of Mass Transport Resistances on Hydrogen Crossover and Cell Performance in PEM Water Electrolyzers by Varying the Cathode Ionomer Content , 2019, Journal of The Electrochemical Society.

[41]  M. Secanell,et al.  Analysis of Inkjet Printed Catalyst Coated Membranes for Polymer Electrolyte Electrolyzers , 2018 .

[42]  S. Ardizzone,et al.  "Inner" and "outer" active surface of RuO2 electrodes , 1990 .