Multiframe Maximum-Likelihood Tag Estimation for RFID Anticollision Protocols

Automatic identification based on radio frequency identification (RFID) is progressively being introduced into industrial environments, enabling new applications and processes. In the context of communications, RFID rely mostly on Frame Slotted Aloha (FSA) anticollision protocols. Their goal is to reduce the time required to detect all the tags within range (identification time). Using FSA, the maximum identification rate is achieved when the number of contending tags equals the number of contention slots available in the frame. Therefore, the reader must estimate the number of contenders and allocate that number of slots for the next frame. This paper introduces the new MFML-DFSA anticollision protocol. It estimates the number of contenders by means of a maximum-likelihood estimator, which uses the statistical information from several frames (multiframe estimation) to improve the accuracy of the estimate. Based on this expected number of tags, the algorithm determines the best frame length for the next reading frame, taking into account the constraints of the EPCglobal Class-1 Gen-2 standard. The MFML-DFSA algorithm is compared with previous proposals and found to outperform these in terms of (lower) average identification time and computational cost, which makes it suitable for implementation in commercial RFID readers.

[1]  Suresh Chalasani,et al.  Data Architectures for RFID Transactions , 2007, IEEE Transactions on Industrial Informatics.

[2]  Jie Wu,et al.  A Fully Integrated 900-MHz Passive RFID Transponder Front End With Novel Zero-Threshold RF–DC Rectifier , 2009, IEEE Transactions on Industrial Electronics.

[3]  Dong-Kai Yang,et al.  Transmission Control Solutions Using Interval Estimation Method for EPC C1G2 RFID Tag Identification , 2007, 2007 International Conference on Wireless Communications, Networking and Mobile Computing.

[4]  F. Schoute,et al.  Dynamic Frame Length ALOHA , 1983, IEEE Trans. Commun..

[5]  Aylin Yener,et al.  ASAP: A MAC Protocol for Dense and Time-Constrained RFID Systems , 2006, 2006 IEEE International Conference on Communications.

[6]  Markus Rupp,et al.  Slot-by-slot minimum squared error estimator for tag populations in FSA protocols , 2008 .

[7]  Klaus Finkenzeller,et al.  RFID Handbook: Radio-Frequency Identification Fundamentals and Applications , 2000 .

[8]  Jong-Gwan Yook,et al.  Effects of Reader-to-Reader Interference on the UHF RFID Interrogation Range , 2009, IEEE Transactions on Industrial Electronics.

[9]  F.J. Gonzalez-Castao,et al.  Analysis of DFSA anti-collision protocols in passive RFID environments , 2009, 2009 35th Annual Conference of IEEE Industrial Electronics.

[10]  Ieee Xplore,et al.  IEEE Transactions on Industrial Informatics , 2005 .

[11]  Jae-Hyun Kim,et al.  Dynamic framed slotted ALOHA algorithms using fast tag estimation method for RFID system , 2006, CCNC 2006. 2006 3rd IEEE Consumer Communications and Networking Conference, 2006..

[12]  M. Daneshmand,et al.  A New Slot-Count Selection Algorithm for RFID Protocol , 2007, 2007 Second International Conference on Communications and Networking in China.

[13]  Wonjun Lee,et al.  Q+-Algorithm : An Enhanced RFID Tag Collision Arbitration Algorithm , 2007, UIC.

[14]  Gary M. Gaukler Item-Level RFID in a Retail Supply Chain With Stock-Out-Based Substitution , 2011, IEEE Transactions on Industrial Informatics.

[15]  Inwhee Joe,et al.  A Novel Anti-Collision Algorithm with Optimal Frame Size for RFID System , 2007, 5th ACIS International Conference on Software Engineering Research, Management & Applications (SERA 2007).

[16]  M. Victoria Bueno-Delgado,et al.  On the optimal frame-length configuration on real passive RFID systems , 2011, J. Netw. Comput. Appl..

[17]  Wen-Tzu Chen,et al.  An Efficient Anti-Collision Method for Tag Identification in a RFID System , 2006, IEICE Trans. Commun..

[18]  Olgica Milenkovic,et al.  Probabilistic Transforms for Combinatorial Urn Models , 2004, Combinatorics, Probability and Computing.

[19]  Markus Rupp,et al.  Slot-wise maximum likelihood estimation of the tag population size in FSA protocols , 2010, IEEE Transactions on Communications.

[20]  Harald Vogt,et al.  Efficient Object Identification with Passive RFID Tags , 2002, Pervasive.

[21]  Eric A. rtOa,et al.  Packet Switching Satellites ' , 2005 .

[22]  Samer S. Saab,et al.  A Standalone RFID Indoor Positioning System Using Passive Tags , 2011, IEEE Transactions on Industrial Electronics.

[23]  Tae-Jin Lee,et al.  An Efficient Reader Anticollision Algorithm in Dense RFID Networks With Mobile RFID Readers , 2009, IEEE Transactions on Industrial Electronics.

[24]  Günter Schäfer,et al.  Credential Management for Automatic Identification Solutions in Supply Chain Management , 2008, IEEE Transactions on Industrial Informatics.

[25]  Wen-Tzu Chen,et al.  An Efficient Scheme for Multiple Access in a RFID System , 2006, ICWN.

[26]  Wen-Tzu Chen,et al.  An Accurate Tag Estimate Method for Improving the Performance of an RFID Anticollision Algorithm Based on Dynamic Frame Length ALOHA , 2009, IEEE Transactions on Automation Science and Engineering.

[27]  Maurizio Rebaudengo,et al.  On Improving Automation by Integrating RFID in the Traceability Management of the Agri-Food Sector , 2009, IEEE Transactions on Industrial Electronics.

[28]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[29]  C. Floerkemeier Transmission control scheme for fast RFID object identification , 2006, Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOMW'06).

[30]  Yi Pan,et al.  A Novel Anti-Collision Algorithm in RFID Systems for Identifying Passive Tags , 2010, IEEE Transactions on Industrial Informatics.