Generalized route planning model for hazardous material transportation with VaR and equity considerations

Recently, the Value-at-Risk (VaR) framework was introduced for the routing problem of a single hazmat trip. In this paper, we extend the VaR framework in two important ways. First, we show how to apply the VaR concept to a more realistic multi-trip multi-hazmat type framework, which determines routes that minimize the global VaR value while satisfying equity constraints. Second, we show how to embed the algorithm for the single hazmat trip problem into a Lagrangian relaxation framework to obtain an efficient solution method for this general case. We test our computational experience based on a real-life hazmat routing scenario in the Albany district of New York State. Our results indicate that one can achieve a high degree of risk dispersion while controlling the VaR value within the desired confidence level.

[1]  Mark H. Karwan,et al.  Modeling Equity of Risk in the Transportation of Hazardous Materials , 1990, Oper. Res..

[2]  Rajan Batta,et al.  Equitable Sequencing of a Given Set of Hazardous Materials Shipments , 1991, Transp. Sci..

[3]  Michael G.H. Bell Mixed Routing Strategies for Hazardous Materials: Decision-Making Under Complete Uncertainty , 2007 .

[4]  Vedat Verter,et al.  A Path-Based Approach for Hazmat Transport Network Design , 2008, Manag. Sci..

[5]  E. Martins An algorithm for ranking paths that may contain cycles , 1984 .

[6]  J. Current,et al.  A MODEL TO ASSESS RISK, EQUITY AND EFFICIENCY IN FACILITY LOCATION AND TRANSPORTATION OF HAZARDOUS MATERIALS. , 1995 .

[7]  Philip Wolfe,et al.  Validation of subgradient optimization , 1974, Math. Program..

[8]  Eugene R. Russell,et al.  PROCEDURE FOR DEVELOPING TRUCK ACCIDENT AND RELEASE RATES FOR HAZMAT ROUTING , 1991 .

[9]  David Eppstein,et al.  Finding the k Shortest Paths , 1999, SIAM J. Comput..

[10]  Paolo Dell'Olmo,et al.  On finding dissimilar Pareto-optimal paths , 2005, Eur. J. Oper. Res..

[11]  Ertugrul Alp,et al.  Risk-Based Transportation Planning Practice: Overall Methodology And A Case Example , 1995 .

[12]  Stefano Giordani,et al.  Finding minimum and equitable risk routes for hazmat shipments , 2007, Comput. Oper. Res..

[13]  Jared L. Cohon,et al.  Simultaneous Siting and Routing in the Disposal of Hazardous Wastes , 1991, Transp. Sci..

[14]  Rajan Batta,et al.  Optimal Obnoxious Paths on a Network: Transportation of Hazardous Materials , 1988, Oper. Res..

[15]  M Abkowitz,et al.  Developing a risk/cost framework for routing truck movements of hazardous materials. , 1988, Accident; analysis and prevention.

[16]  J. Y. Yen,et al.  Finding the K Shortest Loopless Paths in a Network , 2007 .

[17]  Mark D. Abkowitz,et al.  ESTIMATING THE RELEASE RATES AND COSTS OF TRANSPORTING HAZARDOUS WASTE , 1984 .

[18]  Rajan Batta,et al.  Planning Dissimilar Paths for Military Units , 2005 .

[19]  Michael Kuby,et al.  A minimax method for finding the k best "differentiated" paths , 2010 .

[20]  Rajan Batta,et al.  Objectives Derived form Viewing Hazmat Shipments as a Sequence of Independent Bernoulli Trials , 1997, Transp. Sci..

[21]  Lucio Bianco,et al.  A Bilevel flow model for HazMat transportation network design , 2008 .

[22]  Erhan Erkut,et al.  A comparison of p-dispersion heuristics , 1994, Comput. Oper. Res..

[23]  Erhan Erkut,et al.  On finding dissimilar paths , 2000, Eur. J. Oper. Res..

[24]  Taehan Lee,et al.  Robust shortest path problems with two uncertain multiplicative cost coefficients , 2013 .

[25]  Abraham Duarte,et al.  Tabu search and GRASP for the maximum diversity problem , 2007, Eur. J. Oper. Res..

[26]  Minnie H. Patel,et al.  Optimal routing of hazardous materials considering risk of spill , 1994 .

[27]  M. Kuby Programming Models for Facility Dispersion: The p‐Dispersion and Maxisum Dispersion Problems , 2010 .

[28]  Rajan Batta,et al.  Value-at-Risk model for hazardous material transportation , 2014, Ann. Oper. Res..

[29]  Ralph L. Keeney,et al.  Equity and Public Risk , 1980, Oper. Res..

[30]  D. S. Joy,et al.  HIGHWAY 3.1, AN ENHANCED HIGHWAY ROUTING MODEL PROGRAM DESCRIPTION, METHODOLOGY AND REVISED USER'S MANUAL. , 1993 .

[31]  Vedat Verter,et al.  Toll Policies for Mitigating Hazardous Materials Transport Risk , 2009, Transp. Sci..

[32]  Vedat Verter,et al.  Designing a Road Network for Hazardous Materials Transportation , 2004, Transp. Sci..

[33]  Abraham Duarte,et al.  Heuristics for the bi-objective path dissimilarity problem , 2009, Comput. Oper. Res..

[34]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[35]  Erhan Erkut,et al.  Catastrophe Avoidance Models for Hazardous Materials Route Planning , 2000, Transp. Sci..

[36]  F F Saccomanno,et al.  ECONOMIC EVALUATION OF ROUTING STRATEGIES FOR HAZARDOUS ROAD SHIPMENTS , 1985 .

[37]  E. Erkut The discrete p-dispersion problem , 1990 .

[38]  Mark H. Karwan,et al.  The equity constrained shortest path problem , 1990, Comput. Oper. Res..

[39]  Jianjun Zhang,et al.  Using GIS to assess the risks of hazardous materials transport in networks , 2000, Eur. J. Oper. Res..