On-orbit evaporative fraction estimations using a histogram-based triangle method from Terra MODIS

Abstract. A triangle method has been frequently used for a regional evapotranspiration (ET) or evaporative fraction (EF) estimation using the relationship between a vegetation index and surface temperature. A simple histogram based on an on-orbit EF estimation algorithm is developed to determine hot and cold edges in the triangle distribution using only remotely sensed data. A new histogram based on an EF estimation algorithm is developed and compared with different options of existing hot and cold edge algorithms. The selected algorithms are applied to 5-year Terra MODIS data products, and the on-orbit EF estimations are validated using ground truth data from southern Great Plains. Using numerous iterations among the tested EF algorithms with the triangle method, the “histogram”-based hot edge and newly proposed cold edge algorithm combinations provide an excellent performance between the ground truth and on-orbit EF estimations. It is shown that the histogram-based EF algorithm has enhanced correlation and mean bias values of 0.74 and 0.087, respectively, providing excellent accuracy for the regional on-orbit EF estimations.

[1]  Pamela L. Nagler,et al.  Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data , 2005 .

[2]  S. Islam,et al.  Estimation of surface evaporation map over Southern Great Plains using remote sensing data , 2001 .

[3]  Le Jiang,et al.  A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations , 1999 .

[4]  Alexander Loew,et al.  Evaluation of Daytime Evaporative Fraction from MODIS TOA Radiances Using FLUXNET Observations , 2014, Remote. Sens..

[5]  V. Singh,et al.  Deriving theoretical boundaries to address scale dependencies of triangle models for evapotranspiration estimation , 2012 .

[6]  Z. Wan Collection-5 MODIS Land Surface Temperature Products Users' Guide , 2006 .

[7]  R. Crago,et al.  Conservation and variability of the evaporative fraction during the daytime , 1996 .

[8]  C. Priestley,et al.  On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters , 1972 .

[9]  Gautam Bisht,et al.  Comparison of evaporative fractions estimated from AVHRR and MODIS sensors over South Florida , 2004 .

[10]  Hua Yang,et al.  Study on NDVI-Ts space by combining LAI and evapotranspiration , 2006 .

[11]  Xiaomin Sun,et al.  Impact of the Spatial Domain Size on the Performance of the Ts-VI Triangle Method in Terrestrial Evapotranspiration Estimation , 2013, Remote. Sens..

[12]  Gautam Bisht,et al.  Estimation and comparison of evapotranspiration from MODIS and AVHRR sensors for clear sky days over the Southern Great Plains , 2006 .

[13]  K. N. Dollman,et al.  - 1 , 1743 .

[14]  A. Holtslag,et al.  A remote sensing surface energy balance algorithm for land (SEBAL)-1. Formulation , 1998 .

[15]  J. Monteith Evaporation and environment. , 1965, Symposia of the Society for Experimental Biology.

[16]  Inge Sandholt,et al.  Validation and scale dependencies of the triangle method for the evaporative fraction estimation over heterogeneous areas , 2014 .

[17]  Rasmus Fensholt,et al.  Combining the triangle method with thermal inertia to estimate regional evapotranspiration — Applied to MSG-SEVIRI data in the Senegal River basin , 2008 .

[18]  J. Norman,et al.  Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover , 1999 .

[19]  F. W. Murray,et al.  On the Computation of Saturation Vapor Pressure , 1967 .

[20]  Liu Shaomin,et al.  Study on NDVI- T s space by combining LAI and evapotranspiration , 2006 .

[21]  Antonio Motisi,et al.  A time domain triangle method approach to estimate actual evapotranspiration: Application in a Mediterranean region using MODIS and MSG-SEVIRI products , 2016 .

[22]  S. Idso,et al.  Wheat canopy temperature: A practical tool for evaluating water requirements , 1977 .

[23]  Joan M. Galve,et al.  Temperature‐based and radiance‐based validations of the V5 MODIS land surface temperature product , 2009 .

[24]  L. Jiang,et al.  An intercomparison of regional latent heat flux estimation using remote sensing data , 2003 .

[25]  Bo-Hui Tang,et al.  An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation , 2010 .

[26]  Ramakrishna R. Nemani,et al.  An operational remote sensing algorithm of land surface evaporation , 2003 .

[27]  Terri S. Hogue,et al.  Evaluation of a MODIS triangle-based evapotranspiration algorithm for semi-arid regions , 2013 .

[28]  Wilfried Brutsaert,et al.  Application of self‐preservation in the diurnal evolution of the surface energy budget to determine daily evaporation , 1992 .

[29]  B. Gao NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space , 1996 .

[30]  Xiaoliang Lu,et al.  Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data , 2010 .

[31]  S. Islam,et al.  Evapotranspiration estimation over agricultural plains using MODIS data for all sky conditions , 2015 .

[32]  Thomas J. Schmugge,et al.  An interpretation of methodologies for indirect measurement of soil water content , 1995 .

[33]  T. Carlson An Overview of the “Triangle Method” for Estimating Surface Evapotranspiration and Soil Moisture from Satellite Imagery , 2007, Sensors (Basel, Switzerland).

[34]  J. Qu,et al.  NMDI: A normalized multi‐band drought index for monitoring soil and vegetation moisture with satellite remote sensing , 2007 .

[35]  Terry A. Howell,et al.  Surface Energy Balance Based Evapotranspiration Mapping in the Texas High Plains , 2008, Sensors.

[36]  Zhanqing Li,et al.  Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley-Taylor parameter , 2006 .

[37]  Dan Rosbjerg,et al.  Land-surface modelling in hydrological perspective , 2005 .