Thermal Analysis of Semiconductor Devices

To produce a device, three major aspects of the device operation and fabrication must be studied. The first aspect is the transport of charge carriers, namely, electrons and holes, inside the device. The second one is the process by which the devices are fabricated, and the third is the dissipation of heat from the devices to its environment. The study of carrier transport is commonly referred to as device physics, device modeling or device simulation. Over the past four decades, analytical techniques have been utilized to study devices with simple geometries [1–3]. Later, when the device structures became more complicated, two-dimensional numerical analyses based upon the finite difference method [4–6] have been used. Meanwhile, the three-dimensional finite element technique has also been developed to solve the nonlinear transport equations numerically for devices operating under steady state and transient conditions [7].

[1]  G. Gibbons Transient temperature response of an avalanche diode , 1970 .

[2]  A. Napieralski,et al.  A new approach to thermal analysis of power devices , 1987, IEEE Transactions on Electron Devices.

[3]  G. Ellison Thermal computations for electronic equipment , 1984 .

[4]  J. L. Moll,et al.  Design theory of a surface field-effect transistor , 1961 .

[5]  G. Ellison The effect of some composite structures on the thermal resistance of substrates and integrated circuit chips , 1973 .

[6]  A. L. Palisoc,et al.  Thermal analysis of integrated circuit devices and packages , 1989 .

[7]  R. Hannemann,et al.  Electronic System Thermal Design for Reliability , 1977, IEEE Transactions on Reliability.

[8]  James F. Gibbons,et al.  Projected range statistics. Semiconductors and related materials. 2nd edition , 1975 .

[9]  R. Dutton,et al.  Models for computer simulation of complete IC fabrication process , 1979, IEEE Transactions on Electron Devices.

[10]  M. Amann Thermal resistance of ridge‐waveguide lasers mounted upside down , 1987 .

[11]  E. M. Buturla,et al.  Finite-element analysis of semiconductor devices: the FIELDAY program , 1981 .

[12]  Daeje Chin,et al.  Two-dimensional oxidation , 1983, IEEE Transactions on Electron Devices.

[13]  David P. Kennedy,et al.  Spreading Resistance in Cylindrical Semiconductor Devices , 1960 .

[14]  W. Joyce,et al.  Thermal resistance of heterostructure lasers , 1975 .

[15]  C. Brebbia,et al.  Boundary Element Techniques in Engineering , 1979 .

[16]  L. Mahalingam,et al.  Thermal Studies on Pin Grid Array Packages for High Density LSI and VLSI Logic Circuits , 1983 .

[17]  C. Sah Characteristics of the metal-Oxide-semiconductor transistors , 1964 .

[18]  D. Newman,et al.  Thermal-resistance models for proton-isolated double-heterostructure lasers , 1978 .

[19]  H. A. Luther,et al.  Applied numerical methods , 1969 .

[20]  J. Altenbach,et al.  Segerlind, L. J., Applied Finite Element Analysis. New York‐London‐Sydney‐Toronto, John Wiley & Sons 1976. XIII, 422 S., £ 12.60 , 1979 .

[21]  S. Mukherjee,et al.  Boundary element techniques: Theory and applications in engineering , 1984 .

[22]  William Shockley,et al.  The theory of p-n junctions in semiconductors and p-n junction transistors , 1949, Bell Syst. Tech. J..

[23]  C. D. Maldonado ROMANS II A two-dimensional process simulator for modeling and simulation in the design of VLSI devices , 1983 .

[24]  A. S. Grove Physics and Technology of Semiconductor Devices , 1967 .

[25]  Paolo Cielo,et al.  Pulsed photothermal modeling of layered materials , 1986 .

[26]  D de Cogan,et al.  A two-dimensional transmission line matrix model for heat flow in power semiconductors , 1985 .

[27]  G. Ellison The Thermal Design of an LSI Single-Chip Package , 1976 .

[28]  W. Nakwaski,et al.  Thermal resistance of light-emitting diodes , 1985, IEEE Transactions on Electron Devices.

[29]  W. Nakwaski Thermal properties of the Burrus-type light-emitting diode: Part II—The results , 1986, IEEE Transactions on Electron Devices.

[30]  J. G. Smith,et al.  Spreading resistance of multiple-layer cylindrical structures , 1973 .

[31]  D. Waller,et al.  Analysis of Surface Mount Thermal and Thermal Stress Performance , 1983 .

[32]  W. Engeler,et al.  Thermal characteristics of GaAs laser junctions under high power pulsed conditions , 1965 .

[33]  E. S. Schlig,et al.  Thermal properties of very fast transistors , 1970 .

[34]  R. R. O'Brien,et al.  Computer aided two-dimensional analysis of the junction field-effect transistor , 1970 .

[35]  J. Andrews,et al.  Thermal Characteristics of 16- and 40-Pin Plastic DIP's , 1981 .

[36]  L. Segerlind Applied Finite Element Analysis , 1976 .

[37]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[38]  V. Hein Convection and conduction cooling of substrates containing multiple heat sources , 1967 .

[39]  B. Penumalli,et al.  A comprehensive two-dimensional VLSI process simulation program, BICEPS , 1983, IEEE Transactions on Electron Devices.

[40]  P. K. Banerjee,et al.  Boundary element methods in engineering science , 1981 .

[41]  Gene K. Baxter,et al.  High Temperature Thermal Characteristics of Microelectronic Packages , 1977 .

[42]  F. T. Wenthen,et al.  Computer-aided thermal analysis of power semiconductor devices , 1970 .

[43]  Rinaldo Castello,et al.  Integrated-circuit thermal modeling , 1978 .

[44]  Three Dimensional Thermal Problems of Double-Heterostructure Semiconductor Lasers , 1977 .

[45]  C. Brebbia,et al.  Boundary Element Techniques , 1984 .

[46]  A. L. Palisoc,et al.  Thermal analysis of solid-state devices using the boundary element method , 1988 .

[47]  A. G. Kokkas Thermal analysis of multiple-layer structures , 1974 .

[48]  D. Feucht,et al.  Analytical thermal response of a multiple-layer device under the semi-infinite approximation , 1978, IEEE Transactions on Electron Devices.

[49]  Chin C. Lee,et al.  Thermal design of integrated circuit devices , 1988, Fourth Annual IEEE Semiconductor Thermal and Temperature Measurement Symposium.

[50]  J.P. Krusius,et al.  Physical basis of short-channel MESFET operation II: Transient behavior , 1982, IEEE Transactions on Electron Devices.

[51]  H. H. Hansen,et al.  FEDSS—Finite-element diffusion-simulation system , 1983, IEEE Transactions on Electron Devices.

[52]  P. Kelly,et al.  Theory of transient temperature response of a two‐layer system heated with a localized laser beam , 1986 .

[53]  Chin C. Lee,et al.  Void-free Au-Sn eutectic bonding of GaAs dice and its characterization using scanning acoustic microscopy , 1989 .

[54]  Carlos Alberto Brebbia,et al.  The Boundary Element Method for Engineers , 1978 .

[55]  A. Poncet,et al.  Finite-Element Simulation of Local Oxidation of Silicon , 1985, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[56]  J. Frey,et al.  Physical basis of short-channel MESFET operation , 1979 .

[57]  R. D. Lindsted,et al.  Steady-state junction temperatures of semiconductor chips , 1972 .

[58]  F. Curatelli,et al.  Three-dimensional transient thermal simulation: application to delayed short circuit protection in power ICs , 1980 .

[59]  M. Kohara,et al.  High Thermal Conduction Package Technology for Flip Chip Devices , 1983 .

[60]  A. L. Palisoc,et al.  Thermal properties of the multilayer infinite plate structure , 1988 .