Dynamic mechanical analysis and optimization of vapor-grown carbon nanofiber/vinyl ester nanocomposites using design of experiments

A design of experiments approach demonstrated how four formulation and processing factors (i.e., nanofiber type, use of dispersing agent, mixing method, and nanofiber weight fraction) affected the dynamic mechanical properties of carbon nanofiber/vinyl ester nanocomposites. Only <0.50 parts of nanofiber per hundred parts resin produced a 20% increase in the storage modulus vs. that of the neat cured resin. Statistical response surface models predicted nanocomposite storage and loss moduli as a function of the four factors and their interactions. Nanofiber type and weight fraction were the key interacting factors influencing the mean storage modulus. Nanofiber weight fraction, mixing method, and dispersing agent had coupled effects on the mean loss modulus. Employing this methodology, optimized nanocomposite properties can be predicted as a function of nanocomposite formulation and processing.

[1]  Q. Ni,et al.  Effects of Surface Modification on the Dispersion Property of VGC , 2009 .

[2]  H. Toghiani,et al.  High Strain Rate Behavior of Carbon Nanofiber Reinforced Vinyl Ester , 2009 .

[3]  H. Toghiani,et al.  Title: Response Surface Study of Vapor-Grown Carbon Nanofiber/Vinyl Ester Nanocomposites Fabricated Using High-Shear Mixing Authors: , 2009 .

[4]  Ali Fatemi,et al.  Influence of Carbon Nanofiber Content and Surface Treatment on Mechanical Properties of Vinyl Ester , 2008 .

[5]  H. Toghiani,et al.  Neutron scattering, electron microscopy and dynamic mechanical studies of carbon nanofiber/phenolic resin composites , 2008 .

[6]  Scott T. Retterer,et al.  Surface characterization and functionalization of carbon nanofibers , 2008 .

[7]  S. Jeelani,et al.  Improvement in mechanical properties of carbon fabric–epoxy composite using carbon nanofibers , 2008 .

[8]  S. Tjong,et al.  Electrical properties of percolative polystyrene/carbon nanofiber composites , 2008, IEEE Transactions on Dielectrics and Electrical Insulation.

[9]  K. N. Pandey,et al.  Study on mechanical, morphological and electrical properties of carbon nanofiber/polyetherimide composites , 2007 .

[10]  Gary G. Tibbetts,et al.  A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites , 2007 .

[11]  L. Brinson,et al.  Polymer nanocomposites: A small part of the story , 2007 .

[12]  R. Kane,et al.  Creep mitigation in composites using carbon nanotube additives , 2007 .

[13]  M. Schulz,et al.  Improving the Mechanical Properties of Polycarbonate Nanocomposites with Plasma‐Modified Carbon Nanofibers , 2006 .

[14]  Mehdi Hojjati,et al.  Review article: Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview , 2006 .

[15]  Mo Song,et al.  Preparation and characterization of polyurethane-carbon nanotube composites. , 2005, Soft matter.

[16]  H. Thomas Hahn,et al.  Dispersant optimization using design of experiments for SiC/vinyl ester nanocomposites , 2005 .

[17]  Li Shi,et al.  Thermal Conductivity Measurements of Nylon 11-Carbon Nanofiber Nanocomposites , 2005 .

[18]  Chuck Zhang,et al.  Investigation of the dispersion process of SWNTs/SC-15 epoxy resin nanocomposites , 2004 .

[19]  Hartmut Presting,et al.  Future nanotechnology developments for automotive applications , 2003 .

[20]  J. Bicerano,et al.  Polymeric Nanocomposites for Automotive Applications , 2000 .

[21]  D. Cox,et al.  The Theory of the Design of Experiments , 2000 .

[22]  Hui Li Synthesis, Characterization and Properties of Vinyl Ester Matrix Resins , 1998 .

[23]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .