Amorphous IGZO TFT with High Mobility of ~70 cm2/Vs via Vertical Dimension Control using PEALD.

Amorphous InGaZnOx (a-IGZO) thin film transistors (TFTs) are currently used in flat-panel displays due to their beneficial properties. However, conventional a-IGZO TFT has a mobility of ~10 cm2/Vs, which is not satisfactory for high-resolution display applications such as virtual and augmented reality (VR and AR, respectively) applications. Although increasing the fraction of Indium (In) can achieve high mobilities exceeding 50 cm2/Vs, the TFT stability is significantly reduced due to the intrinsically high carrier density of In-rich amorphous oxides. Therefore, development of effective way to carrier density suppression in In-rich oxides will be a key strategy to realization ofhigh-mobility a-IGZO. In this study, we report that In-rich IGZO TFTs consisting of vertically stacked InOx and GaZnOx atomic layers fabricated at a low deposition temperature (200 oC) exhibit significantly high mobilities of ~80 cm2/Vs while keeping a reasonable carrier density of ~1017 cm-3. We found that the ratio of InOx to GaZnOx is critical to TFT performance parameters such as mobility and threshold voltage. This study illustrates the potential advantages of ALD processes for fabricating ultra-high mobility oxide TFTs.

[1]  F. Fang,et al.  Surface passivation of GaAs using atomic layer deposition grown MgO , 2015 .

[2]  M. Pepper,et al.  Electronic conduction in amorphous and polycrystalline zinc-indium oxide films , 2010 .

[3]  H. Ohta,et al.  Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4 , 2005 .

[4]  R. L. Weiher Electrical Properties of Single Crystals of Indium Oxide , 1962 .

[5]  K. Nielsch,et al.  Thermoelectric transport and Hall measurements of low defect Sb2Te3 thin films grown by atomic layer deposition , 2013 .

[6]  S. Bent,et al.  Correlating Growth Characteristics in Atomic Layer Deposition with Precursor Molecular Structure: The Case of Zinc Tin Oxide , 2014 .

[7]  Jin-seong Park,et al.  Review of recent advances in flexible oxide semiconductor thin-film transistors , 2017 .

[8]  Nak-Jin Seong,et al.  Effects of Deposition Temperature on the Device Characteristics of Oxide Thin-Film Transistors Using In-Ga-Zn-O Active Channels Prepared by Atomic-Layer Deposition. , 2017, ACS applied materials & interfaces.

[9]  Jin-seong Park,et al.  Review Article: Atomic layer deposition for oxide semiconductor thin film transistors: Advances in research and development , 2018, Journal of Vacuum Science & Technology A.

[10]  Jin-seong Park,et al.  Atomic Layer Deposition of an Indium Gallium Oxide Thin Film for Thin-Film Transistor Applications. , 2017, ACS applied materials & interfaces.

[11]  Tobin J. Marks,et al.  Gate Dielectrics for Organic Field‐Effect Transistors: New Opportunities for Organic Electronics , 2005 .

[12]  Lifeng Chi,et al.  High- k Gate Dielectrics for Emerging Flexible and Stretchable Electronics. , 2018, Chemical reviews.

[13]  Pedro Barquinha,et al.  The Effect of Deposition Conditions and Annealing on the Performance of High-Mobility GIZO TFTs , 2008 .

[14]  Zhenglong Wu,et al.  Effects of doping and annealing on properties of ZnO films grown by atomic layer deposition , 2015, Nanoscale Research Letters.

[15]  T. Kuwana,et al.  X-ray photoelectron/Auger electron spectroscopic studies of tin and indium metal foils and oxides , 1977 .

[16]  T. Kamiya,et al.  Effects of Diffusion of Hydrogen and Oxygen on Electrical Properties of Amorphous Oxide Semiconductor, In-Ga-Zn-O , 2013 .

[17]  A. Sharma,et al.  Spatial atmospheric atomic layer deposition of InxGayZnzO for thin film transistors. , 2015, ACS applied materials & interfaces.

[18]  Sungchul Kim,et al.  28‐4L: Late‐News Paper: An Ultra High Density 1.96”UHD 2250ppi Display , 2017 .

[19]  Hideo Hosono,et al.  Origins of threshold voltage shifts in room-temperature deposited and annealed a-In–Ga–Zn–O thin-film transistors , 2009 .

[20]  Hyun Jae Kim,et al.  Effects of high‐pressure H2O‐annealing on amorphous IGZO thin‐film transistors , 2011 .

[21]  V. Subramanian,et al.  Mobility Enhancement in Solution‐Processed Transparent Conductive Oxide TFTs due to Electron Donation from Traps in High‐k Gate Dielectrics , 2016 .

[22]  H. Hosono,et al.  Ultra-wide bandgap amorphous oxide semiconductors for NBIS-free thin-film transistors , 2019, APL Materials.

[23]  H. Hosono,et al.  Hydrogen anion and subgap states in amorphous In–Ga–Zn–O thin films for TFT applications , 2017 .

[24]  Pedro Barquinha,et al.  Toward High-Performance Amorphous GIZO TFTs , 2009 .

[25]  Hideo Hosono,et al.  Combinatorial approach to thin-film transistors using multicomponent semiconductor channels: An application to amorphous oxide semiconductors in In–Ga–Zn–O system , 2007 .

[26]  H. Hosono,et al.  Generation of electron carriers in insulating thin film of MgIn2O4 spinel by Li+ implantation , 1994 .

[27]  U. Chung,et al.  Instability in threshold voltage and subthreshold behavior in Hf–In–Zn–O thin film transistors induced by bias-and light-stress , 2010 .

[28]  Pedro Barquinha,et al.  Electron transport and optical characteristics in amorphous indium zinc oxide films , 2006 .

[29]  L. Dake,et al.  Auger parameter measurements of zinc compounds relevant to zinc transport in the environment , 1989 .

[30]  Min Jae Kim,et al.  Impact of cation compositions on the performance of thin-film transistors with amorphous indium gallium zinc oxide grown through atomic layer deposition , 2018, Journal of Information Display.

[31]  H. Fujiwara,et al.  Correlation between oxygen stoichiometry, structure, and opto-electrical properties in amorphous In2O3:H films , 2012 .

[32]  H. Taguchi,et al.  Metal-insulator transition in the system (Ca1−xLax)MnO2.97 (0.05≤x≤0.4) , 1986 .

[33]  Soo Min Hwang,et al.  Effect of Sintering Time at Low Temperature on the Properties of IGZO TFTs Fabricated by Using the Sol-gel Process , 2010 .

[34]  E. Fortunato,et al.  Role of Ga2O3–In2O3–ZnO channel composition on the electrical performance of thin-film transistors , 2011 .

[35]  Pablo Sanchis,et al.  Towards Oxide Electronics: a Roadmap , 2019, Applied Surface Science.

[36]  Hideo Hosono,et al.  Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films , 2004 .

[37]  R. L. Weiher,et al.  Optical Properties of Indium Oxide , 1966 .

[38]  Hiroyuki Ohshima,et al.  8.1: Invited Paper: Value of LTPS: Present and Future , 2014 .

[39]  Jin-seong Park,et al.  Atomic layer deposition of highly conductive indium oxide using a liquid precursor and water oxidant , 2015 .

[40]  Jin-seong Park,et al.  Low-Temperature Growth of Indium Oxide Thin Film by Plasma-Enhanced Atomic Layer Deposition Using Liquid Dimethyl(N-ethoxy-2,2-dimethylpropanamido)indium for High-Mobility Thin Film Transistor Application. , 2016, ACS applied materials & interfaces.

[41]  R. B. M. Cross,et al.  Investigating the stability of zinc oxide thin film transistors , 2006 .

[42]  H. Ohta,et al.  Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor , 2003, Science.

[43]  M. Sayer,et al.  The metal-insulator transition in lanthanum strontium vanadate , 1975 .

[44]  Jin-seong Park,et al.  Flexible and High-Performance Amorphous Indium Zinc Oxide Thin-Film Transistor Using Low-Temperature Atomic Layer Deposition. , 2016, ACS applied materials & interfaces.