Delay-insensitive computation in asynchronous cellular automata

Asynchronous cellular automata (ACA) are cellular automata that allow cells to update their states independently at random times. Because of the unpredictability of the order of update, computing on ACA is usually done by simulating a timing mechanism to force all cells into synchronicity after which well-established synchronous methods of computation can be used. In this paper, we present a more effective method of computation based upon a 4-state two-dimensional ACA with von Neumann neighborhood that is based on the construction in the cellular space of delay-insensitive circuits, a special type of asynchronous circuits, whose operations are robust to arbitrary delays in operators or interconnection lines. We show that this novel ACA model can be used to construct a universal Turing machine, which suffices to prove its computational universality.

[1]  Priyadarsan Patra,et al.  Efficient building blocks for delay insensitive circuits , 1994, Proceedings of 1994 IEEE Symposium on Advanced Research in Asynchronous Circuits and Systems.

[2]  Tommaso Toffoli,et al.  Cellular Automata Machines , 1987, Complex Syst..

[3]  E. F. Codd,et al.  Cellular automata , 1968 .

[4]  Lutz Priese,et al.  Petri Net Implementations by a Universal Cell Space , 1982, Inf. Control..

[5]  F. Peper,et al.  Asynchronous game of life , 2004 .

[6]  T. E. Ingerson,et al.  Structure in asynchronous cellular automata , 1984 .

[7]  Ferdinand Peper,et al.  On Signals in Asynchronous Cellular Spaces , 2004, IEICE Trans. Inf. Syst..

[8]  Kenichi Morita,et al.  A Simple Universal Logic Element and Cellular Automata for Reversible Computing , 2001, MCU.

[9]  H. Blok,et al.  Synchronous versus asynchronous updating in the ''game of Life'' , 1999 .

[10]  Armin Hemmerling On the Computational Equivalence of Synchronous and Asynchronous Cellular Spaces , 1982, J. Inf. Process. Cybern..

[11]  Edwin Roger Banks Universality in Cellular Automata , 1970, SWAT.

[12]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[13]  Ferdinand Peper,et al.  Universal delay-insensitive circuits with bidirectional and buffering lines , 2004, IEEE Transactions on Computers.

[14]  F. Peper,et al.  Computation by Asynchronously Updating Cellular Automata , 2004 .

[15]  Katsuhiko Nakamura,et al.  Synchronous to Asynchronous Transformation of Polyautomata , 1981, J. Comput. Syst. Sci..

[16]  Ulrich Golze,et al.  (A-)Synchronous (Non-)Deterministic Cell Spaces Simulating Each Other , 1978, J. Comput. Syst. Sci..

[17]  Stephen Wolfram,et al.  Cellular Automata And Complexity , 1994 .

[18]  B. Schönfisch,et al.  Synchronous and asynchronous updating in cellular automata. , 1999, Bio Systems.

[19]  Tommaso Toffoli Integration of the Phase-Difference Relations in Asynchronous Sequential Networks , 1978, ICALP.

[20]  Teruo Serizawa,et al.  Three-state neumann neighbor cellular automata capable of constructing self-reproducing machines , 1987, Systems and Computers in Japan.

[21]  Mathieu Capcarrère Cellular automata and other cellular systems , 2002 .

[22]  F. Peper,et al.  Laying out circuits on asynchronous cellular arrays: a step towards feasible nanocomputers? , 2003 .

[23]  Chrystopher L. Nehaniv Evolution in asynchronous cellular automata , 2002 .

[24]  Ferdinand Peper,et al.  Embedding Universal Delay-Insensitive Circuits in Asynchronous Cellular Spaces , 2003, Fundam. Informaticae.

[25]  Robert M. Keller,et al.  Towards a Theory of Universal Speed-Independent Modules , 1974, IEEE Transactions on Computers.

[26]  LUTZ PRIESE,et al.  A Note on Asynchronous Cellular Automata , 1978, J. Comput. Syst. Sci..

[27]  Tommaso Toffoli,et al.  Cellular automata machines - a new environment for modeling , 1987, MIT Press series in scientific computation.