Preparation and electrochemical properties of high capacity silicon-based composites for lithium-ion batteries

[1]  Yan‐Bing He,et al.  Efforts on enhancing the Li-ion diffusion coefficient and electronic conductivity of titanate-based anode materials for advanced Li-ion batteries , 2020 .

[2]  C. Wen,et al.  High electrochemical stability Al-doped spinel LiMn2O4 cathode material for Li-ion batteries , 2020 .

[3]  Yitai Qian,et al.  Porosity controlled synthesis of nanoporous silicon by chemical dealloying as anode for high energy lithium-ion batteries. , 2019, Journal of colloid and interface science.

[4]  Li Yi-ran,et al.  Enhancing the electrochemical performance of micron-scale SiO@C/CNTs anode via adding piezoelectric material BaTiO3 for high-power lithium ion battery , 2019, Journal of Alloys and Compounds.

[5]  Qing Zhou,et al.  Enhanced cycling performance and rate capacity of SiO anode material by compositing with monoclinic TiO2 (B) , 2019, Applied Surface Science.

[6]  Tongtao Li,et al.  An affordable manufacturing method to boost the initial Coulombic efficiency of disproportionated SiO lithium-ion battery anodes , 2019, Journal of Power Sources.

[7]  X. Xiong,et al.  Scalable synthesis SiO@C anode by fluidization thermal chemical vapor deposition in fluidized bed reactor for high-energy lithium-ion battery , 2019, Applied Surface Science.

[8]  P. Li,et al.  Nano/Microstructured Silicon-Graphite Composite Anode for High-Energy-Density Li-Ion Battery. , 2019, ACS nano.

[9]  Hongbo Zeng,et al.  Magnesio-mechanochemical reduced SiO for high-performance lithium ion batteries , 2018, Journal of Power Sources.

[10]  Xiaodong He,et al.  Enhanced reversible Li-ion storage in Si@Ti3C2 MXene nanocomposite , 2018, Electrochemistry Communications.

[11]  Z. Wen,et al.  High-performance phosphorus-modified SiO/C anode material for lithium ion batteries , 2018, Ceramics International.

[12]  Youyuan Huang,et al.  The progress of novel binder as a non‐ignorable part to improve the performance of Si‐based anodes for Li‐ion batteries , 2018 .

[13]  Yongsong Luo,et al.  Nanosilicon anodes for high performance rechargeable batteries , 2017 .

[14]  L. Mai,et al.  Self-sacrificed synthesis of carbon-coated SiOx nanowires for high capacity lithium ion battery anodes , 2017 .

[15]  Jae Goo Lee,et al.  5L-Scale Magnesio-Milling Reduction of Nanostructured SiO2 for High Capacity Silicon Anodes in Lithium-Ion Batteries. , 2016, Nano letters.

[16]  J. Eckert,et al.  SEI-component formation on sub 5 nm sized silicon nanoparticles in Li-ion batteries: the role of electrode preparation, FEC addition and binders. , 2015, Physical chemistry chemical physics : PCCP.

[17]  Liquan Chen,et al.  Thick solid electrolyte interphases grown on silicon nanocone anodes during slow cycling and their negative effects on the performance of Li-ion batteries. , 2015, Nanoscale.

[18]  Huixin Chen,et al.  A Peanut Shell Inspired Scalable Synthesis of Three-Dimensional Carbon Coated Porous Silicon Particles as an Anode for Lithium-Ion Batteries , 2015 .

[19]  Qinjiao Peng,et al.  High Reversible Capacity Si/C Composite Anodes for Lithium-Ion Rechargeable Batteries , 2014 .

[20]  W. Yoon,et al.  Electrochemical behavior of carbon-coated silicon monoxide electrode with chromium coating in rechargeable lithium cell , 2013 .

[21]  Hui Wu,et al.  Designing nanostructured Si anodes for high energy lithium ion batteries , 2012 .

[22]  X. Qu,et al.  Facile synthesis of ordered porous Si@C nanorods as anode materials for Li-ion batteries , 2012 .

[23]  S. Okada,et al.  Investigation of the irreversible reaction mechanism and the reactive trigger on SiO anode material for lithium-ion battery , 2011 .

[24]  M. Whittingham,et al.  High performance Si/MgO/graphite composite as the anode for lithium-ion batteries , 2011 .

[25]  P. Moreau,et al.  The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries , 2011 .

[26]  Ki Jae Kim,et al.  Si–graphite composites as anode materials for lithium secondary batteries , 2010 .

[27]  V. Srinivasan,et al.  In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation , 2010, 1108.0647.

[28]  Jae-Hun Kim,et al.  Li-alloy based anode materials for Li secondary batteries. , 2010, Chemical Society reviews.

[29]  Hansu Kim,et al.  Polymer microsphere embedded Si/graphite composite anode material for lithium rechargeable battery , 2010 .

[30]  Sung-Man Lee,et al.  Spherical silicon/graphite/carbon composites as anode material for lithium-ion batteries , 2008 .

[31]  P. Kumta,et al.  Silicon-based composite anodes for Li-ion rechargeable batteries , 2007 .

[32]  I. Barsukov,et al.  Lithium-ion batteries based on carbon-silicon-graphite composite anodes , 2007 .

[33]  V. Khomenko,et al.  Characterization of silicon-and carbon-based composite anodes for lithium-ion batteries , 2007 .

[34]  Feng Li,et al.  Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries , 2006 .

[35]  C. C. Ahn,et al.  Highly Reversible Lithium Storage in Nanostructured Silicon , 2003 .

[36]  Z. Wen,et al.  High capacity silicon/carbon composite anode materials for lithium ion batteries , 2003 .

[37]  Kevin W. Eberman,et al.  Colossal Reversible Volume Changes in Lithium Alloys , 2001 .

[38]  Ram A. Sharma,et al.  Thermodynamic Properties of the Lithium‐Silicon System , 1976 .

[39]  Bin Yang,et al.  Magnesiothermic Reduction Preparation and Electrochemical Properties of a Highly Ordered Mesoporous Si/C Anode Material for Lithium-Ion Batteries , 2016 .

[40]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .