Harmonic analysis on homogeneous spaces
暂无分享,去创建一个
[1] Nicolas Bourbaki,et al. Groupes et algèbres de Lie , 1971 .
[2] M. Sugiura. Representations of Compact Groups Realized by Spherical Functions on Symmetric Spaces , 1962 .
[3] S. Helgason. Differential Geometry and Symmetric Spaces , 1964 .
[4] Harish-Chandra. Spherical functions on a semi-simple Lie group I , 1958 .
[5] Sigurdur Helgason,et al. A duality for symmetric spaces with applications to group representations , 1970 .
[6] C. Boyer. On the supplementary series of SO0(p, 1) , 1973 .
[7] R. Strichartz. Harmonic analysis on hyperboloids , 1973 .
[8] P. Schapira. Théorie des hyperfonctions , 1970 .
[9] Harish-Chandra. Discrete series for semisimple Lie groups I , 1965 .
[10] Harish-Chandra. Plancherel Formula for the 2 x 2 Real Unimodular Group. , 1952, Proceedings of the National Academy of Sciences of the United States of America.
[11] R. Gangolli. On the Plancherel Formula and the Paley-Wiener Theorem for Spherical Functions on Semisimple Lie Groups , 1971 .
[12] Harish-Chandra. Harmonic analysis on semisimple Lie groups , 1970 .
[13] N. Vilenkin. Special Functions and the Theory of Group Representations , 1968 .
[15] N. Mukunda. Unitary Representations of the Homogeneous Lorentz Group in an O(2, 1) Basis , 1968 .
[16] D. P. Zhelobenko. Compact Lie Groups and Their Representations , 1973 .
[17] S. Helgason. Eigenspaces of the Laplacian; integral representations and irreducibility , 1974 .
[18] 橋本 英典,et al. A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi ; Higher Transcendental Functions, Vols. I, II, III. McGraw-Hill, New York-Toronto-London, 1953, 1953, 1955. xxvi+302, xvii+396, xvii+292頁. 16×23.5cm. $6.50, $7.50, $6.50. , 1955 .
[19] R. Ra̧czka,et al. Eigenfunction Expansions Associated with the Second‐Order Invariant Operator on Hyperboloids and Cones. III , 1967 .
[20] F. Bruhat,et al. Sur les représentations induites des groupes de Lie , 1956 .
[21] S. S. Koh. On affine symmetric spaces , 1965 .
[22] N. Mukunda. Unitary Representations of the Lorentz Groups: Reduction of the Supplementary Series under a Noncompact Subgroup , 1968 .
[23] H. Weyl. The Classical Groups , 1939 .
[24] A. Korányi,et al. A Fatou-type theorem for harmonic functions on symmetric spaces , 1968 .
[25] T. Shintani. On the decomposition of regular representation of the Lorentz group on a hyperboloid of one sheet , 1967 .
[26] A. Tengstrand. Distributions Invariant under an Orthogonal Group of Arbitrary Signature. , 1960 .
[27] S. Helgason. An analogue of the Paley-Wiener theorem for the Fourier transform on certain symmetric spaces , 1966 .
[28] The bounded spherical functions on symmetric spaces , 1969 .
[29] I. Satake,et al. ON REPRESENTATIONS AND COMPACTIFICATIONS OF SYMMETRIC RIEMANNIAN SPACES , 1960 .
[30] Harish-Chandra. Discrete series for semisimple Lie groups. II , 1966 .
[31] E. Cartan. Sur la détermination d’un système orthogonal complet dans un espace de riemann symétrique clos , 1929 .
[32] I. Gel'fand,et al. REPRESENTATIONS OF THE GROUP SL(2, R), WHERE R IS A RING OF FUNCTIONS , 1973 .