Harmonic analysis on homogeneous spaces

Harmonic analysis on homogeneous spaces is a far-reaching generalization of the classical theory of Fourier series and Fourier integrals. It is a branch of functional analysis which is vigorously developing now. The principal contents is closely connected with group representation theory in infinite-dimensional spaces. On the other hand, it interacts with such diverse fields as algebra, algebraic geometry, spectral theory of operators, number theory, Hamiltonian mechanics, quantum mechanics.

[1]  Nicolas Bourbaki,et al.  Groupes et algèbres de Lie , 1971 .

[2]  M. Sugiura Representations of Compact Groups Realized by Spherical Functions on Symmetric Spaces , 1962 .

[3]  S. Helgason Differential Geometry and Symmetric Spaces , 1964 .

[4]  Harish-Chandra Spherical functions on a semi-simple Lie group I , 1958 .

[5]  Sigurdur Helgason,et al.  A duality for symmetric spaces with applications to group representations , 1970 .

[6]  C. Boyer On the supplementary series of SO0(p, 1) , 1973 .

[7]  R. Strichartz Harmonic analysis on hyperboloids , 1973 .

[8]  P. Schapira Théorie des hyperfonctions , 1970 .

[9]  Harish-Chandra Discrete series for semisimple Lie groups I , 1965 .

[10]  Harish-Chandra Plancherel Formula for the 2 x 2 Real Unimodular Group. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[11]  R. Gangolli On the Plancherel Formula and the Paley-Wiener Theorem for Spherical Functions on Semisimple Lie Groups , 1971 .

[12]  Harish-Chandra Harmonic analysis on semisimple Lie groups , 1970 .

[13]  N. Vilenkin Special Functions and the Theory of Group Representations , 1968 .

[14]  Decompositions of Discrete Most Degenerate Representations of SO0(p, q) when Restricted to Representations of SO0(p, q − 1) or SO0(p − 1, q) , 1967 .

[15]  N. Mukunda Unitary Representations of the Homogeneous Lorentz Group in an O(2, 1) Basis , 1968 .

[16]  D. P. Zhelobenko Compact Lie Groups and Their Representations , 1973 .

[17]  S. Helgason Eigenspaces of the Laplacian; integral representations and irreducibility , 1974 .

[18]  橋本 英典,et al.  A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi ; Higher Transcendental Functions, Vols. I, II, III. McGraw-Hill, New York-Toronto-London, 1953, 1953, 1955. xxvi+302, xvii+396, xvii+292頁. 16×23.5cm. $6.50, $7.50, $6.50. , 1955 .

[19]  R. Ra̧czka,et al.  Eigenfunction Expansions Associated with the Second‐Order Invariant Operator on Hyperboloids and Cones. III , 1967 .

[20]  F. Bruhat,et al.  Sur les représentations induites des groupes de Lie , 1956 .

[21]  S. S. Koh On affine symmetric spaces , 1965 .

[22]  N. Mukunda Unitary Representations of the Lorentz Groups: Reduction of the Supplementary Series under a Noncompact Subgroup , 1968 .

[23]  H. Weyl The Classical Groups , 1939 .

[24]  A. Korányi,et al.  A Fatou-type theorem for harmonic functions on symmetric spaces , 1968 .

[25]  T. Shintani On the decomposition of regular representation of the Lorentz group on a hyperboloid of one sheet , 1967 .

[26]  A. Tengstrand Distributions Invariant under an Orthogonal Group of Arbitrary Signature. , 1960 .

[27]  S. Helgason An analogue of the Paley-Wiener theorem for the Fourier transform on certain symmetric spaces , 1966 .

[28]  The bounded spherical functions on symmetric spaces , 1969 .

[29]  I. Satake,et al.  ON REPRESENTATIONS AND COMPACTIFICATIONS OF SYMMETRIC RIEMANNIAN SPACES , 1960 .

[30]  Harish-Chandra Discrete series for semisimple Lie groups. II , 1966 .

[31]  E. Cartan Sur la détermination d’un système orthogonal complet dans un espace de riemann symétrique clos , 1929 .

[32]  I. Gel'fand,et al.  REPRESENTATIONS OF THE GROUP SL(2, R), WHERE R IS A RING OF FUNCTIONS , 1973 .