Gridded Ensemble Precipitation and Temperature Estimates for the Contiguous United States

AbstractGridded precipitation and temperature products are inherently uncertain because of myriad factors, including interpolation from a sparse observation network, measurement representativeness, and measurement errors. Generally uncertainty is not explicitly accounted for in gridded products of precipitation or temperature; if it is represented, it is often included in an ad hoc manner. A lack of quantitative uncertainty estimates for hydrometeorological forcing fields limits the application of advanced data assimilation systems and other tools in land surface and hydrologic modeling. This study develops a gridded, observation-based ensemble of precipitation and temperature at a daily increment for the period 1980–2012 for the conterminous United States, northern Mexico, and southern Canada. This allows for the estimation of precipitation and temperature uncertainty in hydrologic modeling and data assimilation through the use of the ensemble variance. Statistical verification of the ensemble indicates ...

[1]  David I. F. Grimes,et al.  Hydrological modelling using ensemble satellite rainfall estimates in a sparsely gauged river basin: The need for whole-ensemble calibration , 2015 .

[2]  Yang Hong,et al.  Probabilistic precipitation rate estimates with ground‐based radar networks , 2015 .

[3]  Steven W. Running,et al.  Artificial amplification of warming trends across the mountains of the western United States , 2015 .

[4]  Faisal Hossain,et al.  How well can we estimate error variance of satellite precipitation data around the world , 2014 .

[5]  T. Wheeler,et al.  Advances in the Stochastic Modeling of Satellite-Derived Rainfall Estimates Using a Sparse Calibration Dataset , 2014 .

[6]  M. Clark,et al.  An intercomparison of statistical downscaling methods used for water resource assessments in the United States , 2014 .

[7]  M. Gervais,et al.  Representing Extremes in a Daily Gridded Precipitation Analysis over the United States: Impacts of Station Density, Resolution, and Gridding Methods , 2014 .

[8]  Yudong Tian,et al.  An Error Model for Uncertainty Quantification in High-Time-Resolution Precipitation Products , 2014 .

[9]  R. Teegavarapu Statistical corrections of spatially interpolated missing precipitation data estimates , 2014 .

[10]  Martyn P. Clark,et al.  Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: data set characteristics and assessment of regional variability in hydrologic model performance , 2014 .

[11]  Martyn P. Clark,et al.  Hydrologic Implications of Different Large-Scale Meteorological Model Forcing Datasets in Mountainous Regions , 2014 .

[12]  A. Barros,et al.  The Integrated Precipitation and Hydrology Experiment - Hydrologic Applications for the Southeast US (IPHEx-H4SE) Part III: High-Resolution Ensemble Rainfall Products , 2014 .

[13]  T. Bellerby,et al.  Ensemble Representation of Uncertainty in Lagrangian Satellite Rainfall Estimates , 2013 .

[14]  S. Running,et al.  Global evaluation of MTCLIM and related algorithms for forcing of ecological and hydrological models , 2013 .

[15]  Yudong Tian,et al.  Modeling errors in daily precipitation measurements: Additive or multiplicative? , 2013 .

[16]  Y. Hong,et al.  Comparison of TRMM 2A25 Products, Version 6 and Version 7, with NOAA/NSSL Ground Radar-Based National Mosaic QPE , 2013 .

[17]  Marielle Gosset,et al.  An error model for instantaneous satellite rainfall estimates: evaluation of BRAIN‐TMI over West Africa , 2013 .

[18]  D. Kavetski,et al.  Confronting Input Uncertainty in Environmental Modelling , 2013 .

[19]  J. Abatzoglou Development of gridded surface meteorological data for ecological applications and modelling , 2013 .

[20]  R. Vose,et al.  An Overview of the Global Historical Climatology Network-Daily Database , 2012 .

[21]  K. Mo,et al.  Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products , 2012 .

[22]  V. Chandrasekar,et al.  A New Dual-Polarization Radar Rainfall Algorithm: Application in Colorado Precipitation Events , 2011 .

[23]  Amir AghaKouchak,et al.  A comparison of three remotely sensed rainfall ensemble generators , 2010 .

[24]  Marc Berenguer,et al.  Geostatistical radar-raingauge combination with nonparametric correlograms: methodological considerations and application in Switzerland , 2010 .

[25]  Uang,et al.  The NCEP Climate Forecast System Reanalysis , 2010 .

[26]  Russell S. Vose,et al.  Comprehensive Automated Quality Assurance of Daily Surface Observations , 2010 .

[27]  Claude N. Williams,et al.  On the reliability of the U.S. surface temperature record , 2010 .

[28]  George Kuczera,et al.  Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors , 2010 .

[29]  P. Xie,et al.  Performance of high‐resolution satellite precipitation products over China , 2010 .

[30]  F. Turk,et al.  Component analysis of errors in satellite-based precipitation estimates , 2009 .

[31]  Robert F. Adler,et al.  Evaluation of TMPA satellite-based research and real-time rainfall estimates during six tropical-related heavy rainfall events over Louisiana, USA , 2009 .

[32]  Emad Habib,et al.  Accounting for Uncertainties of the TRMM Satellite Estimates , 2009, Remote. Sens..

[33]  David T. Bolvin,et al.  Improving the global precipitation record: GPCP Version 2.1 , 2009 .

[34]  Russell S. Vose,et al.  The U.S. Historical Climatology Network Monthly Temperature Data, Version 2 , 2009 .

[35]  Phillip A. Arkin,et al.  An Intercomparison and Validation of High-Resolution Satellite Precipitation Estimates with 3-Hourly Gauge Data , 2009 .

[36]  C. Daly,et al.  Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States , 2008 .

[37]  P. Jones,et al.  A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006 , 2008 .

[38]  Matthew J. Menne,et al.  Strategies for evaluating quality assurance procedures , 2008 .

[39]  T. Bellerby,et al.  Satellite Rainfall Uncertainty Estimation Using an Artificial Neural Network , 2007 .

[40]  D. Grimes,et al.  Stochastic modelling of rainfall from satellite data , 2007 .

[41]  Yudong Tian,et al.  Systematic anomalies over inland water bodies in satellite‐based precipitation estimates , 2007 .

[42]  W. Briggs Statistical Methods in the Atmospheric Sciences , 2007 .

[43]  K. Stahl,et al.  Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density , 2006 .

[44]  G. McCabe,et al.  Assimilation of snow covered area information into hydrologic and land-surface models , 2006 .

[45]  Faisal Hossain,et al.  A two-dimensional satellite rainfall error model , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[46]  David D. Parrish,et al.  NORTH AMERICAN REGIONAL REANALYSIS , 2006 .

[47]  M. Clark,et al.  Probabilistic Quantitative Precipitation Estimation in Complex Terrain , 2005 .

[48]  Ji-zhong Sun,et al.  Probabilistic and Ensemble Representations of the Uncertainty in an IR/Microwave Satellite Precipitation Product , 2005 .

[49]  Claude N. Williams,et al.  Detection of Undocumented Changepoints Using Multiple Test Statistics and Composite Reference Series. , 2005 .

[50]  D. Lettenmaier,et al.  Production of Temporally Consistent Gridded Precipitation and Temperature Fields for the Continental United States , 2005 .

[51]  Kuolin Hsu,et al.  Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter , 2005 .

[52]  Bart Nijssen,et al.  Effect of precipitation sampling error on simulated hydrological fluxes and states: Anticipating the Global Precipitation Measurement satellites , 2004 .

[53]  Jiannong Fang,et al.  An efficient and accurate algorithm for generating spatially‐correlated random fields , 2003 .

[54]  Emmanouil N. Anagnostou,et al.  Improving Radar-Based Estimation of Rainfall over Complex Terrain , 2002 .

[55]  Eric A. Rosenberg,et al.  A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States: Update and Extensions* , 2002 .

[56]  Arun Kumar,et al.  Long‐range experimental hydrologic forecasting for the eastern United States , 2002 .

[57]  Frank S. Marzano,et al.  Error analysis of TMI rainfall estimates over ocean for variational data assimilation , 2002 .

[58]  M. Wand Local Regression and Likelihood , 2001 .

[59]  J. Susskind,et al.  Global Precipitation at One-Degree Daily Resolution from Multisatellite Observations , 2001 .

[60]  Henry F. Diaz,et al.  Creating a Serially Complete, National Daily Time Series of Temperature and Precipitation for the Western United States , 2000 .

[61]  Witold F. Krajewski,et al.  Initial Validation of the Global Precipitation Climatology Project Monthly Rainfall over the United States , 2000 .

[62]  Brian A. Colle,et al.  The Limitations of the WSR-88D Radar Network for Quantitative Precipitation Measurement over the Coastal Western United States , 1999 .

[63]  Anton Kruger,et al.  An evaluation of NEXRAD precipitation estimates in complex terrain , 1999 .

[64]  Guohua Pan,et al.  Local Regression and Likelihood , 1999, Technometrics.

[65]  M. Clark,et al.  Characteristics of the western United States snowpack from snowpack telemetry (SNOTEL) data , 1999 .

[66]  M. Morrissey,et al.  Uncertainty analysis of satellite rainfall algorithms over the tropical Pacific , 1998 .

[67]  Daqing Yang,et al.  Accuracy of NWS 8 Standard Nonrecording Precipitation Gauge: Results and Application of WMO Intercomparison , 1998 .

[68]  Peter E. Thornton,et al.  Generating surfaces of daily meteorological variables over large regions of complex terrain , 1997 .

[69]  Rajat Bindlish,et al.  Aggregation of digital terrain data using a modified fractal interpolation scheme , 1996 .

[70]  C. Daly,et al.  A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain , 1994 .

[71]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[72]  Mark E. Johnson,et al.  Multivariate Statistical Simulation , 1989, International Encyclopedia of Statistical Science.

[73]  P. M. Austin,et al.  Relation between Measured Radar Reflectivity and Surface Rainfall , 1987 .

[74]  E. Lehmann,et al.  Nonparametrics: Statistical Methods Based on Ranks , 1976 .

[75]  J. Nash,et al.  River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .

[76]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[77]  Pablo A. Mendoza,et al.  Implications of the Methodological Choices for Hydrologic Portrayals of Climate Change over the Contiguous United States: Statistically Downscaled Forcing Data and Hydrologic Models , 2016 .

[78]  Seyed Hamed Alemohammad,et al.  Characterization of uncertainty in remotely-sensed precipitation estimates , 2015 .

[79]  Yaxing Wei,et al.  Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 2 , 2014 .

[80]  Craig S. Long,et al.  The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc , 2010 .

[81]  Alexander V. Ryzhkov,et al.  Rainfall measurements with the polarimetric WSR-88D radar , 2003 .

[82]  Brian A. Colle,et al.  The Limitations of the WSR-88 D Radar Network for Quantitative Precipitation Measurement over the Coastal Western United States , 1999 .

[83]  D. Shepard,et al.  Computer Mapping: The SYMAP Interpolation Algorithm , 1984 .

[84]  Eric A. Anderson,et al.  National Weather Service river forecast system: snow accumulation and ablation model , 1973 .

[85]  K. Gabriel,et al.  A Markov chain model for daily rainfall occurrence at Tel Aviv , 1962 .

[86]  G. Brier,et al.  Some applications of statistics to meteorology , 1958 .