Vection underwater illustrates the limitations of neutral buoyancy as a microgravity analog

[1]  L. Harris,et al.  Long-duration head down bed rest as an analog of microgravity: Effects on the static perception of upright , 2021, Journal of vestibular research : equilibrium & orientation.

[2]  Athanasios Alexopoulos,et al.  Mechanisms. , 2021, Deutsches Arzteblatt international.

[3]  Jonathan W. Kelly,et al.  The effect of water immersion on vection in virtual reality , 2021, Scientific Reports.

[4]  L. Harris,et al.  When gravity is not where it should be: How perceived orientation affects visual self-motion processing. , 2021, PloS one.

[5]  O. White,et al.  The gravitational imprint on sensorimotor planning and control. , 2020, Journal of neurophysiology.

[6]  A. Bukley,et al.  Horizontal and Vertical Distance Perception in Altered Gravity , 2020, Scientific Reports.

[7]  Zelie Britton,et al.  Vestibular and Multi-Sensory Influences Upon Self-Motion Perception and the Consequences for Human Behavior , 2019, Front. Neurol..

[8]  Christopher K. Rhea,et al.  Changes in Posture Following a Single Session of Long-Duration Water Immersion. , 2018, Journal of applied biomechanics.

[9]  John B Charles,et al.  Practicing for space underwater: inventing neutral buoyancy training, 1963-1968. , 2015, Endeavour.

[10]  Bernhard E Riecke,et al.  Can walking motions improve visually induced rotational self-motion illusions in virtual reality? , 2015, Journal of vision.

[11]  Scott J. Wood,et al.  Rocking or Rolling – Perception of Ambiguous Motion after Returning from Space , 2014, PloS one.

[12]  Laurence R. Harris,et al.  How Much Gravity Is Needed to Establish the Perceptual Upright? , 2014, PloS one.

[13]  Jennifer L. Campos,et al.  Contributions of visual and proprioceptive information to travelled distance estimation during changing sensory congruencies , 2014, Experimental Brain Research.

[14]  Gilles Clément,et al.  Distance and Size Perception in Astronauts during Long-Duration Spaceflight , 2013, Life.

[15]  Stephen Palmisano,et al.  Vection in Depth during Treadmill Walking , 2013, Perception.

[16]  A. Berthoz,et al.  Weightlessness alters up/down asymmetries in the perception of self-motion , 2013, Experimental Brain Research.

[17]  O. Bock,et al.  Changed joint position sense and muscle activity in simulated weightlessness by water immersion. , 2013, Aviation Space and Environmental Medicine.

[18]  Pearl S. Guterman,et al.  Perception of smooth and perturbed vection in short-duration microgravity , 2012, Experimental Brain Research.

[19]  O. Blanke,et al.  The thalamocortical vestibular system in animals and humans , 2011, Brain Research Reviews.

[20]  Christine J. Ziemer,et al.  Estimating distance in real and virtual environments: Does order make a difference? , 2009, Attention, perception & psychophysics.

[21]  D. Angelaki,et al.  Basic and Clinical Aspects of Vertigo and Dizziness How Vestibular Neurons Solve the Tilt/translation Ambiguity Comparison of Brainstem, Cerebellum, and Thalamus , 2022 .

[22]  M. Reschke,et al.  Neuroscience in Space , 2009, American Journal of Neuroradiology.

[23]  Kenneth H. Britten,et al.  Mechanisms of self-motion perception. , 2008, Annual review of neuroscience.

[24]  David Waller,et al.  Interaction With an Immersive Virtual Environment Corrects Users' Distance Estimates , 2007, Hum. Factors.

[25]  Laurence R. Harris,et al.  Travel distance estimation from visual motion by leaky path integration , 2007, Experimental Brain Research.

[26]  R. Bondar,et al.  The Neurolab Spacelab Mission: Neuroscience Research in Space: Results From the STS-90, Neurolab Spacelab Mission , 2005 .

[27]  J. T. Richards,et al.  Exposure to a rotating virtual environment during treadmill locomotion causes adaptation in heading direction , 2005, Experimental Brain Research.

[28]  Markus Lappe,et al.  Absolute travel distance from optic flow , 2005, Vision Research.

[29]  J E Zacher,et al.  The relative role of visual and non-visual cues in determining the perceived direction of "up": experiments in parabolic flight. , 2005, Acta astronautica.

[30]  Peter Willemsen,et al.  The Influence of Restricted Viewing Conditions on Egocentric Distance Perception: Implications for Real and Virtual Indoor Environments , 2005, Perception.

[31]  D. Angelaki,et al.  Gravity or translation: central processing of vestibular signals to detect motion or tilt. , 2003, Journal of vestibular research : equilibrium & orientation.

[32]  Helen E. Ross,et al.  Why do objects appear enlarged under water , 2003 .

[33]  B. J. Yates,et al.  Convergence of limb, visceral, and vertical semicircular canal or otolith inputs onto vestibular nucleus neurons , 2002, Experimental Brain Research.

[34]  F. Mast,et al.  The effect of water immersion on postural and visual orientation. , 1999, Aviation, space, and environmental medicine.

[35]  A M Bronstein,et al.  The Interaction of Otolith and Proprioceptive Information in the Perception of Verticality: The Effects of Labyrinthine and CNS Disease , 1999, Annals of the New York Academy of Sciences.

[36]  Thomas Rosemeier,et al.  Interaction of vestibular, somatosensory and visual signals for postural control and motion perception under terrestrial and microgravity conditions—a conceptual model , 1998, Brain Research Reviews.

[37]  C M Oman,et al.  Horizontal angular VOR changes in orbital and parabolic flight: human neurovestibular studies on SLS-2. , 1996, Journal of applied physiology.

[38]  L R Young,et al.  Tactile influences on astronaut visual spatial orientation: human neurovestibular studies on SLS-2. , 1996, Journal of applied physiology.

[39]  Roland Maurer,et al.  What is modelling for? a critical review of the models of path integration , 1995 .

[40]  D L Harm,et al.  Perceived self-orientation and self-motion in microgravity, after landing and during preflight adaptation training. , 1993, Journal of vestibular research : equilibrium & orientation.

[41]  Chizu Kano,et al.  The Perception of Self-Motion Induced by Peripheral Visual Information in Sitting and Supine Postures , 1991 .

[42]  L R Young,et al.  Microgravity enhances the relative contribution of visually-induced motion sensation. , 1990, Aviation, space, and environmental medicine.

[43]  L R Young,et al.  Perception of linear acceleration in weightlessness. , 1990, Aviation, space, and environmental medicine.

[44]  Walter C. Gogel,et al.  A two-process theory of the response to size and distance , 1987, Perception & Psychophysics.

[45]  M F Reschke,et al.  Otolith tilt-translation reinterpretation following prolonged weightlessness: implications for preflight training. , 1985, Aviation, space, and environmental medicine.

[46]  L R Young,et al.  Spatial orientation in weightlessness and readaptation to earth's gravity. , 1984, Science.

[47]  L. R. Young,et al.  M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 1. Sensory adaptation to weightlessness and readaptation to one-g: an overview , 1983, Experimental Brain Research.

[48]  V. Henn,et al.  The velocity response of vestibular nucleus neurons during vestibular, visual, and combined angular acceleration , 1979, Experimental Brain Research.

[49]  T. Brandt,et al.  Arthrokinetic nystagmus and ego-motion sensation , 1977, Experimental Brain Research.

[50]  N. Wade The effect of water immersion on perception of the visual vertical. , 1973, British Journal of Psychology.

[51]  O F Trout,et al.  Water Immersion Reduced-Gravity Simulation , 1969, Human factors.

[52]  O. F. Trout,et al.  Water immersion simulation of extravehicular activities by astronauts. , 1967 .

[53]  M. M. Taylor,et al.  PEST: Efficient Estimates on Probability Functions , 1967 .

[54]  W. Epstein,et al.  The current status of the size-distance hypotheses. , 1961, Psychological bulletin.

[55]  E E BARNARD,et al.  Visual Problems under Water , 1961, Proceedings of the Royal Society of Medicine.

[56]  Mary Van Baalen,et al.  Tracking Historical NASA EVA Training: Lifetime Surveillance of Astronaut Health (LSAH) Development of the EVA Suit Exposure Tracker (EVA SET) , 2017 .

[57]  G. DeAngelis,et al.  Distributed Visual–Vestibular Processing in the Cerebral Cortex of Man and Macaque , 2017 .

[58]  Laurence R. Young,et al.  Perception of the Body in Space: Mechanisms , 2011 .

[59]  U. Büttner,et al.  Vestibular nuclei activity and eye movements in the alert monkey during sinusoidal optokinetic stimulation , 2004, Experimental Brain Research.

[60]  K. E. Money,et al.  Visually-induced tilt during parabolic flights , 2004, Experimental Brain Research.

[61]  Daniel M Merfeld,et al.  Rotation otolith tilt-translation reinterpretation (ROTTR) hypothesis: a new hypothesis to explain neurovestibular spaceflight adaptation. , 2003, Journal of vestibular research : equilibrium & orientation.

[62]  James E. Zacher,et al.  The Role of Visual Cues in Microgravity Spatial Orientation , 2003 .

[63]  Michael Jenkin,et al.  Humans can use optic flow to estimate distance of travel , 2001, Vision Research.

[64]  W. Norfleet,et al.  Immersed false vertical room. A new motion sickness model. , 1998, Journal of vestibular research : equilibrium & orientation.

[65]  J. Dichgans,et al.  Visual-Vestibular Interaction: Effects on Self-Motion Perception and Postural Control , 1978 .

[66]  Horst Mittelstaedt,et al.  Mechanismen der Orientierung ohne richtende Außenreize , 1973 .

[67]  H E Ross,et al.  Orientation to the vertical in free divers. , 1969, Aerospace medicine.