Blind identification and deconvolution of linear systems driven by binary random sequences
暂无分享,去创建一个
[1] M. Rosenblatt,et al. Deconvolution and Estimation of Transfer Function Phase and Coefficients for NonGaussian Linear Processes. , 1982 .
[2] Jitendra K. Tugnait,et al. Identification of linear stochastic systems via second- and fourth-order cumulant matching , 1987, IEEE Trans. Inf. Theory.
[3] A. Benveniste,et al. Robust identification of a nonminimum phase system: Blind adjustment of a linear equalizer in data communications , 1980 .
[4] Ehud Weinstein,et al. New criteria for blind deconvolution of nonminimum phase systems (channels) , 1990, IEEE Trans. Inf. Theory.
[5] D. Donoho. ON MINIMUM ENTROPY DECONVOLUTION , 1981 .
[6] A. Benveniste,et al. Blind Equalizers , 1984, IEEE Trans. Commun..
[7] Z Ang. MOST-BINARIZATION METHOD FOR RESTORATION OF LINEARLY DEGRADED BINARY IMAGES , 1986 .
[8] M.R. Raghuveer,et al. Bispectrum estimation: A digital signal processing framework , 1987, Proceedings of the IEEE.
[9] E. L. Lehmann,et al. Theory of point estimation , 1950 .
[10] Jerry M. Mendel,et al. Identification of nonminimum phase systems using higher order statistics , 1989, IEEE Trans. Acoust. Speech Signal Process..