Systematic Study of Selected Diagonalization Methods for Configuration Interaction Matrices
暂无分享,去创建一个
Matthew L. Leininger | Henry F. Schaefer | C. David Sherrill | Wesley D. Allen | W. D. Allen | H. Schaefer | C. Sherrill | M. Leininger
[1] Per E. M. Siegbahn,et al. Generalizations of the direct CI method based on the graphical unitary group approach. II. Single and double replacements from any set of reference configurations , 1980 .
[2] A. Stathopoulos,et al. Solution of large eigenvalue problems in electronic structure calculations , 1996 .
[3] Ernest R. Davidson,et al. Matrix Eigenvector Methods , 1983 .
[4] Stefano Evangelisti,et al. Computation and analysis of the full configuration interaction wave function of some simple systems , 1993 .
[5] T. H. Dunning. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .
[6] H. Schaefer,et al. Structures and vibrational frequencies in the full configuration interaction limit: Predictions for four electronic states of methylene using a triple-zeta plus double polarization (TZ2P) basis , 1998 .
[7] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[8] William H. Press,et al. Numerical recipes in C , 2002 .
[9] Ernest R. Davidson,et al. Super-matrix methods , 1989 .
[10] Nicholas C. Handy,et al. Multi-root configuration interaction calculations , 1980 .
[11] E. Davidson,et al. Improved Algorithms for the Lowest Few Eigenvalues and Associated Eigenvectors of Large Matrices , 1992 .
[12] Roberto Ansaloni,et al. A full CI algorithm on the CRAY T3D. Application to the NH3 molecule , 1995 .
[13] J. H. van Lenthe,et al. A space‐saving modification of Davidson's eigenvector algorithm , 1990 .
[14] Stefano Evangelisti,et al. Benchmark full-CI calculation on C2H2: comparison with (SC)2-CI and other truncated-CI approaches , 1998 .
[15] D. Sorensen. Numerical methods for large eigenvalue problems , 2002, Acta Numerica.
[16] Stefano Evangelisti,et al. A vector and parallel full configuration interaction algorithm , 1993 .
[17] Per E. M. Siegbahn,et al. A new direct CI method for large CI expansions in a small orbital space , 1984 .
[18] Stefano Evangelisti,et al. Full configuration interaction algorithm on a massively parallel architecture: Direct‐list implementation , 1998 .
[19] Isaiah Shavitt,et al. The history and evolution of configuration interaction , 1998 .
[20] Roberto Ansaloni,et al. A parallel Full-CI algorithm ✩ , 2000 .
[21] E. Davidson. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .
[22] Matthew L. Leininger,et al. Is Mo/ller–Plesset perturbation theory a convergent ab initio method? , 2000 .
[23] A. Zunger,et al. A new method for diagonalising large matrices , 1985 .
[24] J. Olsen,et al. Passing the one-billion limit in full configuration-interaction (FCI) calculations , 1990 .
[25] Per-Åke Malmqvist. Mathematical Tools in Quantum Chemistry , 1992 .
[26] L. Gagliardi,et al. Full configuration interaction calculations on Be2 , 1994 .
[27] Jeppe Olsen,et al. Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces , 1988 .
[28] G. Diercksen,et al. Methods in Computational Molecular Physics , 1983 .
[29] J. M. Bofill,et al. Some remarks on the use of the three-term recurrence method in the configuration interaction eigenvalue problem , 1994 .
[30] H. A. V. D. Vorsty. University Utrecht a Generalized Jacobi-davidson Iteration Method for Linear Eigenvalue Problems a Generalized Jacobi-davidson Iteration Method for Linear Eigenvalue Problems , 1994 .
[31] H. Schaefer,et al. Full Configuration Interaction Energies, Geometries, and Quartic Force Fields of the Nitrenium Ion , 1998 .
[32] Holger Dachsel,et al. An efficient data compression method for the Davidson subspace diagonalization scheme , 1995 .
[33] Peter J. Knowles,et al. A new determinant-based full configuration interaction method , 1984 .
[34] Matthew L. Leininger,et al. Benchmark configuration interaction spectroscopic constants for X 1Σg+ C2 and X 1Σ+ CN+ , 1998 .
[35] T. H. Dunning. Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .
[36] B. Roos,et al. A new method for large-scale Cl calculations , 1972 .
[37] H.J.J. Van Dam,et al. An improvement of Davidson's iteration method: Applications to MRCI and MRCEPA calculations , 1996 .
[38] A. Mitrushenkov. Passing the several billions limit in FCI calculations on a mini-computer , 1994 .
[39] Ron Shepard,et al. A data compression method applicable to first‐order convergent iterative procedures , 1990 .
[40] Stefano Evangelisti,et al. A full-configuration benchmark for the N2 molecule , 1999 .
[41] K. Hirao,et al. A generalization of the Davidson's method to large nonsymmetric eigenvalue problems , 1982 .
[42] R. Morgan,et al. Generalizations of Davidson's method for computing eigenvalues of sparse symmetric matrices , 1986 .
[43] E. Davidson,et al. A modified Ho for Epstein-Nesbet Rayleigh-Schrōdinger pertubation theory , 1979 .
[44] Roberto Ansaloni,et al. A one billion determinant full CI benchmark on the Cray T3D , 1996 .
[45] M. G. Feler. Calculation of eigenvectors of large matrices , 1974 .
[46] A. Császár,et al. The barrier to linearity of hydrogen sulphide , 2000 .
[47] B. Roos,et al. Lecture notes in quantum chemistry , 1992 .
[48] Ruben Pauncz,et al. Spin Eigenfunctions: Construction and Use , 1979 .