Normalizable, Integrable, and Linearizable Saddle Points for Complex Quadratic Systems in $$\mathbb{C}^2 $$

AbstractIn this paper, we consider complex differential systems in the neighborhood of a singular point with eigenvalues in the ratio 1 : −λ with λ ∈ $$\mathbb{R}^{ + *} $$ . We address the questions of orbital normalizability, normalizability (i.e., convergence of the normalizing transformation), integrability (i.e., orbital linearizability), and linearizability of the system. As for the experimental part of our study, we specialize to quadratic systems and study the values of λ for which these notions are distinct. For this purpose we give several tools for demonstrating normalizability, integrability, and linearizability.Our main interest is the global organization of the strata of those systems for which the normalizing transformations converge, or for which we have integrable or linearizable saddles as λ and the other parameters of the system vary. Many of the results are valid in the larger context of polynomial or analytic vector fields. We explain several features of the bifurcation diagram, namely, the existence of a continuous skeleton of integrable (linearizable) systems with sequences of holes filled with orbitally normalizable (normalizable) systems and strata finishing at a particular value of λ. In particular, we introduce the Ecalle-Voronin invariants of analytic classifcation of a saddle point or the Martinet-Ramis invariants for a saddle-node and illustrate their role as organizing centers of the bifurcation diagram.

[1]  Christiane Rousseau,et al.  DARBOUX LINEARIZATION AND ISOCHRONOUS CENTERS WITH A RATIONAL FIRST INTEGRAL , 1997 .

[2]  R. Moussu,et al.  Holonomie et intégrales premières , 1980 .

[3]  H. Zoladek,et al.  The problem of center for resonant singular points of polynomial vector fields , 1997 .

[4]  R. Perez-Marco,et al.  Solution complète au problème de Siegel de linéarisation d'une application holomorphe au voisinage d'un point fixe (d'après J.-C. Yoccoz) , 1992 .

[5]  H. Dulac,et al.  Sur les cycles limites , 1923 .

[6]  Simon Gravel,et al.  Integrability and Linearizability of the Lotka–Volterra System with a Saddle Point with Rational Hyperbolicity Ratio , 2002 .

[7]  J. Martinet,et al.  Problèmes De Modules Pour Des Équations Différentielles Non Linéaires Du Premier Ordre , 1982 .

[8]  Christiane Rousseau,et al.  Normalizable, integrable and linearizable saddle points in the lotka-volterra system , 2004 .

[9]  G. Darboux,et al.  Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré , 1878 .

[10]  J. Martinet,et al.  Classification analytique des 'equations di 'erentielles non lin'eaires r'esonantes du premier ordre , 1983 .

[11]  C. Rousseau,et al.  MODULUS OF ANALYTIC CLASSIFICATION FOR UNFOLDINGS OF GENERIC PARABOLIC DIFFEOMORPHISMS , 2004 .

[12]  Dominique Cerveau,et al.  Formes intégrables holomorphes singulières , 1982 .

[13]  C. Christopher Invariant algebraic curves and conditions for a centre , 1994, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[14]  Alexandra Fronville,et al.  Solution of the 1 : −2 resonant center problem in the quadratic case , 1998 .