Compensation of rate-dependent hysteresis nonlinearities in a magnetostrictive actuator using an inverse Prandtl–Ishlinskii model

Magnetostrictive actuators invariably exhibit hysteresis nonlinearities that tend to become significant under high rates of inputs, and could cause oscillations and error in the micro-positioning tasks. This study presents a methodology for compensation of hysteresis nonlinearity in a magnetostrictive actuator subject to a wide range of input rates in an open-loop manner. The hysteresis compensation is attained through application of an inverse rate-dependent Prandtl–Ishlinskii model formulated on the basis of the rate-dependent Prandtl–Ishlinskii hysteresis model and laboratory-measured hysteresis properties of the magnetostrictive actuator under inputs at frequencies up to 200 Hz. The effectiveness of the inverse rate-dependent Prandtl–Ishlinskii model compensator for mitigating the major and minor loop hysteresis nonlinearities is demonstrated through simulation results and hardware-in-the-loop laboratory measurements of a magnetostrictive actuator (stroke ±50 μm) under inputs in the 1–200 Hz frequency range. Both the simulation and experimental results revealed reduction of peak hysteresis from 4.7 to 0.645 μm, when the proposed inverse rate-dependent model is applied as a feedforward hysteresis compensator, which occurred under excitations at the lowest frequency of 1 Hz. The results suggest that the inverse Prandtl–Ishlinskii model could provide hysteresis compensation under different rates of inputs in a simple and effective manner.

[1]  Eckhard Quandt,et al.  Application of magnetostrictive thin films for microdevices , 1997 .

[2]  D. Davino,et al.  Phenomenological dynamic model of a magnetostrictive actuator , 2004 .

[3]  Subhash Rakheja,et al.  Adaptive variable structure control of a class of nonlinear systems with unknown Prandtl-Ishlinskii hysteresis , 2005, IEEE Transactions on Automatic Control.

[4]  Seung-Bok Choi,et al.  Compensator design for hysteresis of a stacked PZT actuator using a congruency-based hysteresis model , 2012 .

[5]  Pavel Krejcí,et al.  Compensation of Complex Hysteresis and Creep Effects in Piezoelectrically Actuated Systems —A New Preisach Modeling Approach , 2009, IEEE Transactions on Automatic Control.

[6]  S. LynchChristopher,et al.  リラクサ強誘電体8/65/35PLZTとオルセンサイクルを用いる焦電廃熱エネルギー回収 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2012 .

[7]  Ralph C. Smith,et al.  Smart material systems - model development , 2005, Frontiers in applied mathematics.

[8]  John S. Baras,et al.  Modeling and control of hysteresis in magnetostrictive actuators , 2004, Autom..

[9]  William S. Oates,et al.  A Non-linear Optimal Control Design using Narrowband Perturbation Feedback for Magnetostrictive Actuators , 2010 .

[10]  Philippe Lutz,et al.  Complete Open Loop Control of Hysteretic, Creeped, and Oscillating Piezoelectric Cantilevers , 2010, IEEE Transactions on Automation Science and Engineering.

[11]  Chun-Yi Su,et al.  Development of the rate-dependent Prandtl–Ishlinskii model for smart actuators , 2008 .

[12]  Micky Rakotondrabe,et al.  Bouc–Wen Modeling and Inverse Multiplicative Structure to Compensate Hysteresis Nonlinearity in Piezoelectric Actuators , 2011, IEEE Transactions on Automation Science and Engineering.

[13]  Chun-Yi Su,et al.  A generalized Prandtl–Ishlinskii model for characterizing the hysteresis and saturation nonlinearities of smart actuators , 2009 .

[14]  Ferruccio Resta,et al.  A model of magnetostrictive actuators for active vibration control , 2011, 2011 IEEE International Symposium on Industrial Electronics.

[15]  M. A. Janaideh,et al.  An inversion formula for a Prandtl–Ishlinskii operator with time dependent thresholds☆ , 2011 .

[16]  P. Krejčí Hysteresis and periodic solutions of semilinear and quasilinear wave equations , 1986 .

[17]  Ciro Visone,et al.  Hysteresis modelling and compensation for smart sensors and actuators , 2008 .

[18]  Hwan-Sik Yoon,et al.  Hysteresis-reduced dynamic displacement control of piezoceramic stack actuators using model predictive sliding mode control , 2012 .

[19]  C. Su,et al.  Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator , 2009 .

[20]  Mårten Sjöström,et al.  Exact invertible hysteresis models based on play operators , 2004 .

[21]  K. Kuhnen,et al.  Inverse control of systems with hysteresis and creep , 2001 .

[22]  Young-Jin Park,et al.  Structural vibration control using linear magnetostrictive actuators , 2007 .

[23]  M. Blamire,et al.  The interface between superconductivity and magnetism: understanding and device prospects , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[24]  Klaus Kuhnen,et al.  Modeling, Identification and Compensation of Complex Hysteretic Nonlinearities: A Modified Prandtl - Ishlinskii Approach , 2003, Eur. J. Control.

[25]  O. Bottauscio,et al.  Modeling the Dynamic Behavior of Magnetostrictive Actuators , 2010, IEEE Transactions on Magnetics.

[26]  Mohammad Al Janaideh,et al.  Compensation of play operator-based Prandtl-Ishlinskii hysteresis model using a stop operator with application to piezoelectric actuators , 2012 .