Compensation of rate-dependent hysteresis nonlinearities in a magnetostrictive actuator using an inverse Prandtl–Ishlinskii model
暂无分享,去创建一个
[1] Eckhard Quandt,et al. Application of magnetostrictive thin films for microdevices , 1997 .
[2] D. Davino,et al. Phenomenological dynamic model of a magnetostrictive actuator , 2004 .
[3] Subhash Rakheja,et al. Adaptive variable structure control of a class of nonlinear systems with unknown Prandtl-Ishlinskii hysteresis , 2005, IEEE Transactions on Automatic Control.
[4] Seung-Bok Choi,et al. Compensator design for hysteresis of a stacked PZT actuator using a congruency-based hysteresis model , 2012 .
[5] Pavel Krejcí,et al. Compensation of Complex Hysteresis and Creep Effects in Piezoelectrically Actuated Systems —A New Preisach Modeling Approach , 2009, IEEE Transactions on Automatic Control.
[6] S. LynchChristopher,et al. リラクサ強誘電体8/65/35PLZTとオルセンサイクルを用いる焦電廃熱エネルギー回収 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2012 .
[7] Ralph C. Smith,et al. Smart material systems - model development , 2005, Frontiers in applied mathematics.
[8] John S. Baras,et al. Modeling and control of hysteresis in magnetostrictive actuators , 2004, Autom..
[9] William S. Oates,et al. A Non-linear Optimal Control Design using Narrowband Perturbation Feedback for Magnetostrictive Actuators , 2010 .
[10] Philippe Lutz,et al. Complete Open Loop Control of Hysteretic, Creeped, and Oscillating Piezoelectric Cantilevers , 2010, IEEE Transactions on Automation Science and Engineering.
[11] Chun-Yi Su,et al. Development of the rate-dependent Prandtl–Ishlinskii model for smart actuators , 2008 .
[12] Micky Rakotondrabe,et al. Bouc–Wen Modeling and Inverse Multiplicative Structure to Compensate Hysteresis Nonlinearity in Piezoelectric Actuators , 2011, IEEE Transactions on Automation Science and Engineering.
[13] Chun-Yi Su,et al. A generalized Prandtl–Ishlinskii model for characterizing the hysteresis and saturation nonlinearities of smart actuators , 2009 .
[14] Ferruccio Resta,et al. A model of magnetostrictive actuators for active vibration control , 2011, 2011 IEEE International Symposium on Industrial Electronics.
[15] M. A. Janaideh,et al. An inversion formula for a Prandtl–Ishlinskii operator with time dependent thresholds☆ , 2011 .
[16] P. Krejčí. Hysteresis and periodic solutions of semilinear and quasilinear wave equations , 1986 .
[17] Ciro Visone,et al. Hysteresis modelling and compensation for smart sensors and actuators , 2008 .
[18] Hwan-Sik Yoon,et al. Hysteresis-reduced dynamic displacement control of piezoceramic stack actuators using model predictive sliding mode control , 2012 .
[19] C. Su,et al. Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator , 2009 .
[20] Mårten Sjöström,et al. Exact invertible hysteresis models based on play operators , 2004 .
[21] K. Kuhnen,et al. Inverse control of systems with hysteresis and creep , 2001 .
[22] Young-Jin Park,et al. Structural vibration control using linear magnetostrictive actuators , 2007 .
[23] M. Blamire,et al. The interface between superconductivity and magnetism: understanding and device prospects , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.
[24] Klaus Kuhnen,et al. Modeling, Identification and Compensation of Complex Hysteretic Nonlinearities: A Modified Prandtl - Ishlinskii Approach , 2003, Eur. J. Control.
[25] O. Bottauscio,et al. Modeling the Dynamic Behavior of Magnetostrictive Actuators , 2010, IEEE Transactions on Magnetics.
[26] Mohammad Al Janaideh,et al. Compensation of play operator-based Prandtl-Ishlinskii hysteresis model using a stop operator with application to piezoelectric actuators , 2012 .