Qualitative stability and synchronicity analysis of power network models in port-Hamiltonian form.

In view of highly decentralized and diversified power generation concepts, in particular with renewable energies, the analysis and control of the stability and the synchronization of power networks is an important topic that requires different levels of modeling detail for different tasks. A frequently used qualitative approach relies on simplified nonlinear network models like the Kuramoto model with inertia. The usual formulation in the form of a system of coupled ordinary differential equations is not always adequate. We present a new energy-based formulation of the Kuramoto model with inertia as a polynomial port-Hamiltonian system of differential-algebraic equations, with a quadratic Hamiltonian function including a generalized order parameter. This leads to a robust representation of the system with respect to disturbances: it encodes the underlying physics, such as the dissipation inequality or the deviation from synchronicity, directly in the structure of the equations, and it explicitly displays all possible constraints and allows for robust simulation methods. The model is immersed into a system of model hierarchies that will be helpful for applying adaptive simulations in future works. We illustrate the advantages of the modified modeling approach with analytics and numerical results.

[1]  A. J. van der Schaft,et al.  Port-Hamiltonian Differential-Algebraic Systems , 2013 .

[2]  S. Strogatz,et al.  Constants of motion for superconducting Josephson arrays , 1994 .

[3]  J. Willems Dissipative dynamical systems Part II: Linear systems with quadratic supply rates , 1972 .

[4]  Volker Mehrmann,et al.  Regularization of linear and nonlinear descriptor systems , 2011 .

[5]  Arjan van der Schaft,et al.  Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity , 2010, Autom..

[6]  Romeo Ortega,et al.  Putting energy back in control , 2001 .

[7]  Hans Zwart,et al.  Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces , 2012 .

[8]  Luigi Fortuna,et al.  A NETWORK OF OSCILLATORS EMULATING THE ITALIAN HIGH-VOLTAGE POWER GRID , 2012 .

[9]  W. R. Howard,et al.  Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness , 2005 .

[10]  P. C. Breedveld,et al.  Modeling and Simulation of Dynamic Systems using Bond Graphs , 2008, ICRA 2008.

[11]  Maria Domenica Di Benedetto,et al.  Nonlinear and Hybrid Systems in Automotive Control , 2002 .

[12]  Arjan van der Schaft,et al.  Hamiltonian formulation of bond graphs , 2003 .

[13]  Juan Luis Varona,et al.  Port-Hamiltonian systems: an introductory survey , 2006 .

[14]  Arjan van der Schaft,et al.  Perspectives in modeling for control of power networks , 2016, Annu. Rev. Control..

[15]  Arjan van der Schaft,et al.  Interconnection of port-Hamiltonian systems and composition of Dirac structures , 2007, Autom..

[16]  F. Bullo,et al.  Synchronization in complex oscillator networks and smart grids , 2012, Proceedings of the National Academy of Sciences.

[17]  Volker Mehrmann,et al.  Stability properties of differential-algebraic equations and Spin-stabilized discretizations. , 2007 .

[18]  Pravin Varaiya,et al.  Arnold diffusion in the swing equations of a power system , 1984 .

[19]  Linda R. Petzold,et al.  Differential-algebraic equations , 2008, Scholarpedia.

[20]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[21]  A. Isidori,et al.  Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems , 1991 .

[22]  Jacquelien M. A. Scherpen,et al.  A Novel Reduced Model for Electrical Networks With Constant Power Loads , 2015, IEEE Transactions on Automatic Control.

[23]  Adilson E. Motter,et al.  Comparative analysis of existing models for power-grid synchronization , 2015, 1501.06926.

[24]  Saifon Chaturantabut,et al.  Structure-preserving model reduction for nonlinear port-Hamiltonian systems , 2011, IEEE Conference on Decision and Control and European Control Conference.

[25]  Babu Narayanan,et al.  POWER SYSTEM STABILITY AND CONTROL , 2015 .

[26]  Diederich Hinrichsen,et al.  Mathematical Systems Theory I , 2006, IEEE Transactions on Automatic Control.

[27]  Hans Zwart,et al.  Port-Hamiltonian descriptor systems , 2017, 1705.09081.

[28]  A. Schaft Port-Hamiltonian Systems: Network Modeling and Control of Nonlinear Physical Systems , 2004 .

[29]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[30]  Dynamics of Fully Coupled Rotators with Unimodal and Bimodal Frequency Distribution , 2015, 1508.00816.

[31]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[32]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .

[33]  Jacquelien M. A. Scherpen,et al.  A port-Hamiltonian approach to power network modeling and analysis , 2013, Eur. J. Control.

[34]  Simona Olmi,et al.  Hysteretic transitions in the Kuramoto model with inertia. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  L. Brugnano,et al.  Line Integral Methods for Conservative Problems , 2015 .

[36]  G. Filatrella,et al.  Analysis of a power grid using a Kuramoto-like model , 2007, 0705.1305.

[37]  Marc Timme,et al.  Self-organized synchronization in decentralized power grids. , 2012, Physical review letters.

[38]  R. Sepulchre,et al.  Synchronization on the circle , 2009, 0901.2408.

[39]  M. Timme,et al.  A universal order parameter for synchrony in networks of limit cycle oscillators. , 2017, Chaos.

[40]  Bernhard Maschke,et al.  Bond graph for dynamic modelling in chemical engineering , 2008 .

[41]  Kathleen Saint-Onge Passivity , 2019, Discovering FranÇoise Dolto.

[42]  R. Varga Geršgorin And His Circles , 2004 .

[43]  Arjan van der Schaft,et al.  Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems , 2011, Autom..

[44]  René Lamour,et al.  Differential-Algebraic Equations: A Projector Based Analysis , 2013 .