Qualitative stability and synchronicity analysis of power network models in port-Hamiltonian form.
暂无分享,去创建一个
Simona Olmi | Eckehard Schöll | Volker Mehrmann | Riccardo Morandin | V. Mehrmann | E. Schöll | S. Olmi | Riccardo Morandin
[1] A. J. van der Schaft,et al. Port-Hamiltonian Differential-Algebraic Systems , 2013 .
[2] S. Strogatz,et al. Constants of motion for superconducting Josephson arrays , 1994 .
[3] J. Willems. Dissipative dynamical systems Part II: Linear systems with quadratic supply rates , 1972 .
[4] Volker Mehrmann,et al. Regularization of linear and nonlinear descriptor systems , 2011 .
[5] Arjan van der Schaft,et al. Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity , 2010, Autom..
[6] Romeo Ortega,et al. Putting energy back in control , 2001 .
[7] Hans Zwart,et al. Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces , 2012 .
[8] Luigi Fortuna,et al. A NETWORK OF OSCILLATORS EMULATING THE ITALIAN HIGH-VOLTAGE POWER GRID , 2012 .
[9] W. R. Howard,et al. Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness , 2005 .
[10] P. C. Breedveld,et al. Modeling and Simulation of Dynamic Systems using Bond Graphs , 2008, ICRA 2008.
[11] Maria Domenica Di Benedetto,et al. Nonlinear and Hybrid Systems in Automotive Control , 2002 .
[12] Arjan van der Schaft,et al. Hamiltonian formulation of bond graphs , 2003 .
[13] Juan Luis Varona,et al. Port-Hamiltonian systems: an introductory survey , 2006 .
[14] Arjan van der Schaft,et al. Perspectives in modeling for control of power networks , 2016, Annu. Rev. Control..
[15] Arjan van der Schaft,et al. Interconnection of port-Hamiltonian systems and composition of Dirac structures , 2007, Autom..
[16] F. Bullo,et al. Synchronization in complex oscillator networks and smart grids , 2012, Proceedings of the National Academy of Sciences.
[17] Volker Mehrmann,et al. Stability properties of differential-algebraic equations and Spin-stabilized discretizations. , 2007 .
[18] Pravin Varaiya,et al. Arnold diffusion in the swing equations of a power system , 1984 .
[19] Linda R. Petzold,et al. Differential-algebraic equations , 2008, Scholarpedia.
[20] J. Willems. Dissipative dynamical systems part I: General theory , 1972 .
[21] A. Isidori,et al. Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems , 1991 .
[22] Jacquelien M. A. Scherpen,et al. A Novel Reduced Model for Electrical Networks With Constant Power Loads , 2015, IEEE Transactions on Automatic Control.
[23] Adilson E. Motter,et al. Comparative analysis of existing models for power-grid synchronization , 2015, 1501.06926.
[24] Saifon Chaturantabut,et al. Structure-preserving model reduction for nonlinear port-Hamiltonian systems , 2011, IEEE Conference on Decision and Control and European Control Conference.
[25] Babu Narayanan,et al. POWER SYSTEM STABILITY AND CONTROL , 2015 .
[26] Diederich Hinrichsen,et al. Mathematical Systems Theory I , 2006, IEEE Transactions on Automatic Control.
[27] Hans Zwart,et al. Port-Hamiltonian descriptor systems , 2017, 1705.09081.
[28] A. Schaft. Port-Hamiltonian Systems: Network Modeling and Control of Nonlinear Physical Systems , 2004 .
[29] R. Sarpong,et al. Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.
[30] Dynamics of Fully Coupled Rotators with Unimodal and Bimodal Frequency Distribution , 2015, 1508.00816.
[31] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[32] Volker Mehrmann,et al. Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .
[33] Jacquelien M. A. Scherpen,et al. A port-Hamiltonian approach to power network modeling and analysis , 2013, Eur. J. Control.
[34] Simona Olmi,et al. Hysteretic transitions in the Kuramoto model with inertia. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.
[35] L. Brugnano,et al. Line Integral Methods for Conservative Problems , 2015 .
[36] G. Filatrella,et al. Analysis of a power grid using a Kuramoto-like model , 2007, 0705.1305.
[37] Marc Timme,et al. Self-organized synchronization in decentralized power grids. , 2012, Physical review letters.
[38] R. Sepulchre,et al. Synchronization on the circle , 2009, 0901.2408.
[39] M. Timme,et al. A universal order parameter for synchrony in networks of limit cycle oscillators. , 2017, Chaos.
[40] Bernhard Maschke,et al. Bond graph for dynamic modelling in chemical engineering , 2008 .
[41] Kathleen Saint-Onge. Passivity , 2019, Discovering FranÇoise Dolto.
[42] R. Varga. Geršgorin And His Circles , 2004 .
[43] Arjan van der Schaft,et al. Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems , 2011, Autom..
[44] René Lamour,et al. Differential-Algebraic Equations: A Projector Based Analysis , 2013 .