On Topological RNA Interaction Structures

Recently a folding algorithm of topological RNA pseudoknot structures was presented in Reidys et al. (2011). This algorithm folds single-stranded γ-structures, that is, RNA structures composed by distinct motifs of bounded topological genus. In this article, we set the theoretical foundations for the folding of the two backbone analogues of γ structures: the RNA γ-interaction structures. These are RNA-RNA interaction structures that are constructed by a finite number of building blocks over two backbones having genus at most γ. Combinatorial properties of γ-interaction structures are of practical interest since they have direct implications for the folding of topological interaction structures. We compute the generating function of γ-interaction structures and show that it is algebraic, which implies that the numbers of interaction structures can be computed recursively. We obtain simple asymptotic formulas for 0- and 1-interaction structures. The simplest class of interaction structures are the 0-interaction structures, which represent the two backbone analogues of secondary structures.

[1]  Carsten Wiuf,et al.  Fatgraph models of proteins , 2009, 0902.1025.

[2]  Peter F. Stadler,et al.  Thermodynamics of RNA-RNA Binding , 2006, German Conference on Bioinformatics.

[3]  Christian M. Reidys,et al.  Partition function and base pairing probabilities for RNA-RNA interaction prediction , 2009, Bioinform..

[4]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[5]  R. C. Penner Cell decomposition and compactification of Riemann's moduli space in decorated Teichm\"uller theory , 2003 .

[6]  E. Bertrand,et al.  Human Box H/ACA Pseudouridylation Guide RNA Machinery , 2004, Molecular and Cellular Biology.

[7]  Christian M. Reidys,et al.  Target prediction and a statistical sampling algorithm for RNA–RNA interaction , 2009, Bioinform..

[8]  D. Pervouchine IRIS: intermolecular RNA interaction search. , 2004, Genome informatics. International Conference on Genome Informatics.

[9]  Thomas J. X. Li,et al.  Combinatorics of $\gamma$-structures , 2011 .

[10]  Christian M. Reidys,et al.  Topology and prediction of RNA pseudoknots , 2011, Bioinform..

[11]  A. Zee,et al.  RNA folding and large N matrix theory , 2001, cond-mat/0106359.

[12]  Robert C. Penner,et al.  Decorated Teichmüller Theory , 2012 .

[13]  Peter F. Stadler,et al.  Partition function and base pairing probabilities of RNA heterodimers , 2006, Algorithms for Molecular Biology.

[14]  Kaizhong Zhang,et al.  RNA-RNA Interaction Prediction and Antisense RNA Target Search , 2006, J. Comput. Biol..

[15]  William S. Massey,et al.  Algebraic Topology: An Introduction , 1977 .

[16]  Christian M. Reidys,et al.  Topology of RNA-RNA Interaction Structures , 2011, J. Comput. Biol..

[17]  A. Zee,et al.  Topological classification of RNA structures. , 2006, Journal of molecular biology.

[18]  E. Blackburn,et al.  A role for a novel 'trans-pseudoknot' RNA-RNA interaction in the functional dimerization of human telomerase. , 2003, Genes & development.

[19]  Rolf Backofen,et al.  IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions , 2008, Bioinform..

[20]  Thomas J. X. Li,et al.  Combinatorics of γ-Structures , 2014, J. Comput. Biol..

[21]  G. Vernizzi,et al.  LargeN Random Matrices for RNA Folding , 2005 .

[22]  Peter F. Stadler,et al.  Translational Control by RNA-RNA Interaction: Improved Computation of RNA-RNA Binding Thermodynamics , 2008, BIRD.

[23]  Don Zagier On the distribution of the number of cycles of elements in symmetric groups , 1995 .

[24]  P. Flajolet,et al.  Analytic Combinatorics: RANDOM STRUCTURES , 2009 .

[25]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[26]  Michael S. Waterman,et al.  Spaces of RNA Secondary Structures , 1993 .

[27]  E Rivas,et al.  A dynamic programming algorithm for RNA structure prediction including pseudoknots. , 1998, Journal of molecular biology.

[28]  J Ofengand,et al.  Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria and chloroplasts. , 1997, Journal of molecular biology.